首页 > 专利 > 江苏大学 > 一种调控镁合金基面织构的磁场下变形处理方法专利详情

一种调控镁合金基面织构的磁场下变形处理方法   0    0

有效专利 查看PDF
专利申请流程有哪些步骤?
专利申请流程图
申请
申请号:指国家知识产权局受理一件专利申请时给予该专利申请的一个标示号码。唯一性原则。
申请日:提出专利申请之日。
2016-06-30
申请公布
申请公布指发明专利申请经初步审查合格后,自申请日(或优先权日)起18个月期满时的公布或根据申请人的请求提前进行的公布。
申请公布号:专利申请过程中,在尚未取得专利授权之前,国家专利局《专利公报》公开专利时的编号。
申请公布日:申请公开的日期,即在专利公报上予以公开的日期。
2016-10-26
授权
授权指对发明专利申请经实质审查没有发现驳回理由,授予发明专利权;或对实用新型或外观设计专利申请经初步审查没有发现驳回理由,授予实用新型专利权或外观设计专利权。
2017-11-17
预估到期
发明专利权的期限为二十年,实用新型专利权期限为十年,外观设计专利权期限为十五年,均自申请日起计算。专利届满后法律终止保护。
2036-06-30
基本信息
有效性 有效专利 专利类型 发明专利
申请号 CN201610499570.9 申请日 2016-06-30
公开/公告号 CN105970136B 公开/公告日 2017-11-17
授权日 2017-11-17 预估到期日 2036-06-30
申请年 2016年 公开/公告年 2017年
缴费截止日
分类号 C22F3/02 主分类号 C22F3/02
是否联合申请 独立申请 文献类型号 B
独权数量 1 从权数量 3
权利要求数量 4 非专利引证数量 0
引用专利数量 5 被引证专利数量 0
非专利引证
引用专利 JP特开2008-75169A、CN101602095A、CN102747311A、CN101837380A、JP特开2010-215974A 被引证专利
专利权维持 2 专利申请国编码 CN
专利事件 事务标签 公开、实质审查、授权
申请人信息
申请人 第一申请人
专利权人 江苏大学 当前专利权人 江苏大学
发明人 王宏明、朱弋、马鸣远、李桂荣 第一发明人 王宏明
地址 江苏省镇江市京口区学府路301号 邮编
申请人数量 1 发明人数量 4
申请人所在省 江苏省 申请人所在市 江苏省镇江市
代理人信息
代理机构
专利代理机构是经省专利管理局审核,国家知识产权局批准设立,可以接受委托人的委托,在委托权限范围内以委托人的名义办理专利申请或其他专利事务的服务机构。
代理人
专利代理师是代理他人进行专利申请和办理其他专利事务,取得一定资格的人。
摘要
本发明提供一种调控镁合金基面织构的磁场下变形处理方法,其特征在于,对于固态镁合金,在变形处理过程中,对镁合金施加强磁场处理,通过控制磁场方向与变形延展方向,调控镁合金基面织构的强弱,实现材料组织与性能的再调控。磁场参数及变形过程的参数对磁场调控镁合金基面织构的效果也有重要影响。采用本发明的优势是在镁合金材料变形过程进行调控,不需要增加额外的工序道次成本,特别是,本发明的过程中材料内部的位错密度增加、晶粒细化,材料的综合性能同步提高。
  • 摘要附图
    一种调控镁合金基面织构的磁场下变形处理方法
  • 说明书附图:图1
    一种调控镁合金基面织构的磁场下变形处理方法
  • 说明书附图:图2
    一种调控镁合金基面织构的磁场下变形处理方法
  • 说明书附图:图3
    一种调控镁合金基面织构的磁场下变形处理方法
法律状态
序号 法律状态公告日 法律状态 法律状态信息
1 2017-11-17 授权
2 2016-10-26 实质审查的生效 IPC(主分类): C22F 3/02 专利申请号: 201610499570.9 申请日: 2016.06.30
3 2016-09-28 公开
权利要求
权利要求书是申请文件最核心的部分,是申请人向国家申请保护他的发明创造及划定保护范围的文件。
1.一种调控镁合金基面织构的磁场下变形处理方法,其特征在于:在固态AZ31镁合金的变形处理过程中,对AZ31镁合金施加强磁场处理,通过控制磁场参数及变形参数,调控AZ31镁合金(0001)基面织构,实现材料组织与性能的再调控;
所述的强磁场的磁感应强度范围为3-5T;
所述变形参数为:变形加工温度为370℃ 400℃,模具的温度在280℃ 320℃范围。
~ ~

2.如权利要求1所述的一种调控镁合金基面织构的磁场下变形处理方法,其特征在于:
所述的强磁场的磁感应强度方向与镁合金变形的延展方向平行,AZ31镁合金(0001)基面织构弱化。

3.如权利要求1所述的一种调控镁合金基面织构的磁场下变形处理方法,其特征在于:
所述的强磁场的磁感应强度方向与镁合金变形的延展方向垂直,AZ31镁合金(0001)基面织构强化。

4.如权利要求1所述的一种调控镁合金基面织构的磁场下变形处理方法,其特征在于:
所述的强磁场类型是直流稳恒强磁场或者脉冲强磁场,施加磁场的作用时间是在镁合金的整个变形过程中全程施加;对于施加直流稳恒强磁场,应当在施加直流稳恒强磁场10s后再开始进行变形处理;对于施加的磁场是脉冲强磁场,应当在施加脉冲强磁场的脉冲数达到5个后再开始进行变形处理。
说明书

技术领域

[0001] 本发明属于镁合金材料变形加工技术领域,主要涉及一种通过磁场下的变形处理调控镁合金基面织构的方法。

背景技术

[0002] 镁合金具有优良的综合性能,其密度较小,比强度、比刚度、弹性模量都较高,导热导电、阻尼减震以及电磁屏蔽等性能比较优越,机加工性能优良且零件尺寸稳定性好,不会对环境产生污染且易于回收等,逐渐成为工程结构材料中最具应用潜力的轻量化金属。
[0003] 关于金属结构的研究表明,由于镁合金的密排六方(HCP)晶体结构,基面织构对于材料的性能起主导作用,包括材料的强度、硬度、变形性能等都与材料的织构相关,因此,调控材料的织构成为调控材料性能的一种有效再加工方法。
[0004] 课题组最新的研究表明,磁场是一种调控材料组织结构的重要物理场,在材料制备中将磁场与传统生产方法相结合,可以制备新材料、开发新方法从而得到性能更优的产品,具有广泛的工业应用前景,而目前还没有通过磁场调控镁合金晶体织构方法的报道。
[0005] 因此,本项发明的目的是提出一种在镁合金材料变形过程中,利用强磁场作用来调控镁合金基面织构,对镁合金基面织构的弱化或强化,从而制备基面织构可控的镁合金,进而实现对材料性能的控制。

发明内容

[0006] 本发明提供一种调控镁合金基面织构的磁场下变形处理方法,解决目前因镁合金材料(0001)基面织构不可控所导致的材料性能不可控、不稳定的问题;实现本发明的方法特征在于:在固态镁合金的变形处理过程中,对镁合金施加强磁场处理,通过控制磁场的磁感应强度方向、磁场参数及镁合金的变形过程参数,调控镁合金(0001)基面织构,实现材料组织与性能的再调控。
[0007] 具体方法特征为:
[0008] 特征一:在固态镁合金的变形处理过程中,对镁合金施加强磁场处理,所述的强磁场的磁感应强度的范围是3-5 T;
[0009] 特征二:当强磁场的磁感应强度方向与镁合金变形的延展方向平行时,镁合金(0001)基面织构弱化;反之,当强磁场的磁感应强度方向与镁合金变形的延展方向垂直,镁合金(0001)基面织构强化;
[0010] 特征三:磁场参数及变形过程的参数对磁场调控镁合金基面织构的效果也有重要影响,镁合金的变形加工温度为370℃ 400℃,模具的温度在280℃ 320℃范围;~ ~
[0011] 特征四:所使用的强磁场类型可以是直流稳恒强磁场,也可以是脉冲强磁场;
[0012] 特征五:施加磁场的作用时间是在镁合金的整个变形过程中全程施加,对于施加直流稳恒强磁场,应当在施加直流稳恒强磁场10s后再开始进行变形处理;对于施加的磁场是脉冲强磁场,应当在施加脉冲强磁场的脉冲数达到5个后再开始进行变形处理,这样有利于发挥强磁场的作用效果。
[0013] 需要补充说明的是:本发明是在现有的镁合金变形加工过程中,对镁合金施加强磁场处理,实现对镁合金(0001)基面织构进行调控,课题组的研究表明,单一的变形处理过程,镁合金(0001)基面织构不能实现弱化或强化的调控,其晶面取向是随机的,而对于固态镁合金材料,单一的施加强磁场,也并不能有效改变镁合金的内部织构,只有在镁合金的变形过程中,在亚晶形成及晶界变形调整过程中,辅以适当的温度作用下,磁场才能对镁合金的织构进行有效调控。
[0014] 基于上述特征和过程原理,采用本发明的主要步骤为:
[0015] 第一步:镁合金及变形加工用的模具加热到需要的温度,镁合金的变形加工温度为370℃ 400℃,模具的温度在280℃ 320℃范围。~ ~
[0016] 第二步:镁合金出坯后进入强磁场处理,如果采用的强磁场是直流稳恒强磁场,应当在施加强磁场10s后再开始进行变形处理;如果施加的强磁场是脉冲强磁场,应当在施加脉冲强磁场的脉冲数达到5个后再开始进行变形处理。
[0017] 本发明的优势:
[0018] 与现有技术相比,本发明具有以下优点和效果:
[0019] (1)传统挤压处理后,镁合金内部晶粒取向如图1(a)所示,镁合金(0001)基面平行于挤压方向,但其法向随机分布;当施加磁场方向与挤压方向垂直时,此时由于镁合金c轴磁化率高于a轴,施加磁场时,镁合金晶粒倾向于c轴平行于磁场方向偏转如图1(b)所示;因此强磁场下变形处理后,镁合金(0001)基面织构强化,实现了晶粒的有序化。
[0020] (2)同样的道理,当施加磁场方向与变形延展方向平行时,如图2所示,晶粒取向由原来的基面取向转变为基面取向与非基面取向共存,弱化原有的(0001)基面织构,材料的性能,包括各项异性会显著变化。
[0021] (3)采用本发明,不需要增加额外的工序道次成本,特别是,本发明的过程中材料内部晶粒细化,材料的综合性能同步提高;理论分析及实践数据表明,采用本发明,在实现镁合金织构变化的同时,由于晶粒旋转、晶界增加等因素使得晶粒粒度减小约18.1%,晶粒平均尺寸从5.41μm细化到4.43μm。
[0022] 附图说明:
[0023] 图1:施加磁场方向与变形延展方向垂直时,镁合金(0001)基面织构强化示意图。其中图(a)是传统无磁场下变形;(b)是采用本发明强化(0001)基面结构示意图。
[0024] 图2:施加磁场方向与变形延展方向平行时,镁合金(0001)基面织构弱化示意图。其中图(a)是传统无磁场下变形;(b)是采用本发明弱化(0001)基面结构示意图。
[0025] 图3:试样的EBSD图(a)无磁场下对比试样;(b)实施例4试样
[0026] 具体实施方式:
[0027] 实施例所用镁合金为广泛采用的工程用变形镁合金AZ31镁合金,其成分如表1所示。
[0028] 表1 AZ31镁合金的成分
[0029]
[0030] 实施例1
[0031] 本实施过程:
[0032] 第一步:镁合金及变形加工用的模具加热到需要的温度,镁合金的加热温度为390℃,模具的温度在300℃。
[0033] 第二步:出坯后进入磁场处理,施加磁场方向与变形延展方向垂直,采用的磁场是4T的直流稳恒强磁场,在开启磁场稳定后,坯料进入磁场区域,施加磁场10s后再开始进行挤压变形处理,获得(0001)基面织构强化的镁合金材料。
[0034] 实施例2
[0035] 本实施过程:
[0036] 第一步:镁合金及变形加工用的模具加热到需要的温度,镁合金的加热温度为400℃,模具的温度在280℃。
[0037] 第二步:出坯后进入磁场处理,施加磁场方向与变形延展方向垂直,采用的磁场是5T的脉冲强磁场,在开启磁场后,坯料进入磁场区域,施加脉冲磁场的脉冲数达到5个后再开始进行变形处理,获得(0001)基面织构强化的镁合金材料。
[0038] 实施例1与实施例2的效果:取上述两个实施例获得的镁合金材料,与相同条件下不施加磁场时的试样相比,通过XRD对挤压后镁合金材料进行检测,发现磁场挤压后(0001)基面织构明显增强,(0001)基面织构所占比例由36-38%增加至74-77%。
[0039] 实施例3
[0040] 本实施过程:
[0041] 第一步:镁合金及变形加工用的模具加热到需要的温度,镁合金的加热温度为370℃,模具的温度在320℃。
[0042] 第二步:出坯后进入磁场处理,施加磁场方向与变形延展方向平行,采用的磁场是3T的直流稳恒强磁场,在开启磁场稳定后,坯料进入磁场区域,施加磁场10s后再开始进行挤压变形处理,获得(0001)基面织构弱化的镁合金材料。
[0043] 实施例4
[0044] 本实施过程:
[0045] 第一步:镁合金及变形加工用的模具加热到需要的温度,镁合金的加热温度为380℃,模具的温度在310℃。
[0046] 第二步:出坯后进入磁场处理,施加磁场方向与变形延展方向平行,采用的磁场是3T的脉冲强磁场,在开启磁场后,坯料进入磁场区域,施加脉冲磁场的脉冲数达到5个后再开始进行变形处理,获得(0001)基面织构弱化的镁合金材料。
[0047] 实施例3与实施例4的效果:取上述两个实施例获得的镁合金材料,与相同条件下不施加磁场时的试样相比,通过XRD对挤压后镁合金材料进行检测,发现磁场挤压后(0001)基面织构明显弱化;以实施例4及其对比例的数据说明:实施例4试样的(0001)基面织构最大值为18.19,同样条件下不施加磁场变形得到的对比例镁合金试样的(0001)基面织构最大强度为23.53,(0001)基面织构降幅达到22.7%,(0001)基面织构显著弱化。
[0048] 除(0001)基面织构改变以外,实施本发明,晶粒粒度会有显著细化,图3给出了实施例4与相同条件下不施加磁场时获得的材料的晶粒分析图,晶粒平均尺寸从5.41μm细化到4.43μm,减幅18.1%,这也说明了采用本发明,晶粒发生明显细化,有助于发挥细晶强化作用,实现材料综合性能的改善。
版权所有:盲专网 ©2023 zlpt.xyz  蜀ICP备2023003576号