首页 > 专利 > 杭州电子科技大学 > 具有掺杂氧化物金属渐变层的耐高温电极及其制备方法专利详情

具有掺杂氧化物金属渐变层的耐高温电极及其制备方法   0    0

有效专利 查看PDF
专利申请流程有哪些步骤?
专利申请流程图
申请
申请号:指国家知识产权局受理一件专利申请时给予该专利申请的一个标示号码。唯一性原则。
申请日:提出专利申请之日。
2021-03-31
申请公布
申请公布指发明专利申请经初步审查合格后,自申请日(或优先权日)起18个月期满时的公布或根据申请人的请求提前进行的公布。
申请公布号:专利申请过程中,在尚未取得专利授权之前,国家专利局《专利公报》公开专利时的编号。
申请公布日:申请公开的日期,即在专利公报上予以公开的日期。
2021-08-13
授权
授权指对发明专利申请经实质审查没有发现驳回理由,授予发明专利权;或对实用新型或外观设计专利申请经初步审查没有发现驳回理由,授予实用新型专利权或外观设计专利权。
2022-11-18
预估到期
发明专利权的期限为二十年,实用新型专利权期限为十年,外观设计专利权期限为十五年,均自申请日起计算。专利届满后法律终止保护。
2041-03-31
基本信息
有效性 有效专利 专利类型 发明专利
申请号 CN202110348190.6 申请日 2021-03-31
公开/公告号 CN113178516B 公开/公告日 2022-11-18
授权日 2022-11-18 预估到期日 2041-03-31
申请年 2021年 公开/公告年 2022年
缴费截止日
分类号 H01L41/047H01L41/29C23C14/00C23C14/02C23C14/08C23C14/14C23C14/35C23C16/40C23C16/455C23C28/00 主分类号 H01L41/047
是否联合申请 独立申请 文献类型号 B
独权数量 1 从权数量 5
权利要求数量 6 非专利引证数量 0
引用专利数量 0 被引证专利数量 0
非专利引证
引用专利 被引证专利
专利权维持 1 专利申请国编码 CN
专利事件 事务标签 公开、实质审查、授权
申请人信息
申请人 第一申请人
专利权人 杭州电子科技大学 当前专利权人 杭州电子科技大学
发明人 轩伟鹏、章弥灵、陈金凯、董树荣、金浩、骆季奎 第一发明人 轩伟鹏
地址 浙江省杭州市下沙高教园区2号大街 邮编 310018
申请人数量 1 发明人数量 6
申请人所在省 浙江省 申请人所在市 浙江省杭州市
代理人信息
代理机构
专利代理机构是经省专利管理局审核,国家知识产权局批准设立,可以接受委托人的委托,在委托权限范围内以委托人的名义办理专利申请或其他专利事务的服务机构。
杭州君度专利代理事务所 代理人
专利代理师是代理他人进行专利申请和办理其他专利事务,取得一定资格的人。
黄前泽
摘要
本发明公开了具有掺杂氧化物金属渐变层的耐高温电极及其制备方法。现有叉指电极在高温下容易团聚发生退化。本发明在衬底上沉积耐高温氧化物层;耐高温氧化物层上沉积间距设置的n层掺杂氧化物金属渐变层;每个掺杂氧化物金属渐变层上沉积若干薄膜层组;若薄膜层组的数量大于1,则各薄膜层组上下堆叠;薄膜层组由从上至下排布的掺杂氧化物金属渐变层和薄膜层组成;掺杂氧化物金属渐变层的材料为掺杂氧化物的金属。本发明在电极层中加入一层耐高温氧化层,可有效阻止高温下电极的熔融与断裂;在电极层中掺杂氧化物,可有效阻止高温下再结晶与晶粒生长,使得电极具有足够高的导电性被应用于高温声表面波器件。
  • 摘要附图
    具有掺杂氧化物金属渐变层的耐高温电极及其制备方法
  • 说明书附图:图1
    具有掺杂氧化物金属渐变层的耐高温电极及其制备方法
  • 说明书附图:图2
    具有掺杂氧化物金属渐变层的耐高温电极及其制备方法
  • 说明书附图:图3
    具有掺杂氧化物金属渐变层的耐高温电极及其制备方法
  • 说明书附图:图4
    具有掺杂氧化物金属渐变层的耐高温电极及其制备方法
法律状态
序号 法律状态公告日 法律状态 法律状态信息
1 2022-11-18 授权
2 2021-08-13 实质审查的生效 IPC(主分类): H01L 41/047 专利申请号: 202110348190.6 申请日: 2021.03.31
3 2021-07-27 公开
权利要求
权利要求书是申请文件最核心的部分,是申请人向国家申请保护他的发明创造及划定保护范围的文件。
1.具有掺杂氧化物金属渐变层的耐高温电极,包括衬底和耐高温氧化物层,其特征在于:还包括掺杂氧化物金属渐变层和薄膜层组;所述的衬底上沉积耐高温氧化物层;耐高温氧化物层上沉积间距设置的n层掺杂氧化物金属渐变层,n≥2;每个掺杂氧化物金属渐变层上沉积若干薄膜层组;若薄膜层组的数量大于1,则各薄膜层组上下堆叠;所述的薄膜层组由从上至下排布的掺杂氧化物金属渐变层和薄膜层组成;所述掺杂氧化物金属渐变层的材料为掺杂氧化物的金属;
所述掺杂氧化物金属渐变层的厚度为20~300nm;
所述掺杂氧化物金属渐变层中氧化物的掺杂浓度渐变,最低掺杂浓度为0.01%,最高掺杂浓度为10%。

2.根据权利要求1所述具有掺杂氧化物金属渐变层的耐高温电极,其特征在于:所述衬底的材料采用硅酸镓镧、钇铁氧体、AlN、GaPO4或GaN。

3.根据权利要求1所述具有掺杂氧化物金属渐变层的耐高温电极,其特征在于:所述耐高温氧化层的材料为Al2O3、ZrO2、SiO2、Y2O3或HfO2。

4.根据权利要求1所述具有掺杂氧化物金属渐变层的耐高温电极,其特征在于:所述耐高温氧化层的厚度为5~30nm。

5.根据权利要求1所述具有掺杂氧化物金属渐变层的耐高温电极,其特征在于:所述掺杂氧化物金属渐变层中的金属材料为Pt、Rh或Ir中的一种或多种按任意配比组合。

6.根据权利要求1所述具有掺杂氧化物金属渐变层的耐高温电极的制备方法,其特征在于:该方法包括如下步骤:
步骤一、对衬底进行清洗、烘干处理;
步骤二、采用原子沉积技术在经步骤一处理后的衬底上沉积一层厚度为5~30nm的耐高温氧化物层;
步骤三、采用微电子光刻技术在耐高温氧化物层上制备得到掺杂氧化物金属渐变层图案;
步骤四、采用磁控溅射技术对经步骤三光刻处理后的样片进行金属靶材与氧化物靶材的共溅射,在耐高温氧化物层上得到20~300nm厚的掺杂氧化物金属渐变全覆盖层,掺杂氧化物金属渐变全覆盖层中氧化物的掺杂浓度渐变;其中,金属靶材的功率固定不变,氧化物靶材的功率随时间周期变化,从500w降低到300w再升高到500w;
步骤五、若掺杂氧化物金属渐变全覆盖层中氧化物的掺杂浓度从中间位置向上或向下均逐渐降低,则采用磁控溅射技术在掺杂氧化物金属渐变全覆盖层上溅射3~15nm厚的金属薄膜全覆盖层;若掺杂氧化物金属渐变全覆盖层中氧化物的掺杂浓度从中间位置向上或向下均逐渐升高,则采用磁控溅射技术在掺杂氧化物金属渐变全覆盖层上溅射3~15nm厚的氧化物薄膜全覆盖层;
步骤六、采用磁控溅射技术对经步骤五光刻处理后的样片进行金属靶材与氧化物靶材的共溅射,在氧化物薄膜全覆盖层或金属薄膜全覆盖层上得到20~300nm厚的掺杂氧化物金属渐变全覆盖层;
步骤七、将经步骤六处理后的样片泡在丙酮溶液中进行超声处理,使得掺杂氧化物金属渐变全覆盖层上除掺杂氧化物金属渐变层图案位置以外的多余电极以及氧化物薄膜全覆盖层或金属薄膜全覆盖层上除掺杂氧化物金属渐变层图案位置以外的多余电极脱离,从而得到掺杂氧化物金属渐变层和薄膜层。
说明书

技术领域

[0001] 本发明属于声表面波器件制造技术领域,具体涉及一种具有掺杂氧化物金属渐变层的耐高温电极及其制备方法。

背景技术

[0002] 现代工业环境中,在温度大于1000℃的环境中,温度、压力等参数的检测是石油、化工、汽车、航天、军事等领域的一项重要任务,由于高温环境下供电和导线联接困难,电子线路难以正常工作,常规传感器的使用受到限制。声表面波传感器是一种新型的传感器件,广泛用于信号处理、频率控制和信息传感等领域。具有高精度、集成化、微机控制化等优点,特别是它本身的高频特性及基片的压电特性可使传感器无源化,并进行无线测量和传输,这对于运动部件、密闭腔、易燃、易爆、辐射、高温等特殊环境的检测非常有利。
[0003] 高温声表面波传感器是声表面波传感器中最重要分支之一,具有广泛和巨大的应用性。而限制声表面波传感器在高温下应用的主要就是基底压电材料和叉指电极的金属材料。常用的以石英、铌酸锂为压电基片的声表面波传感器不宜在高温环境下使用。硅酸镓镧(LGS)压电晶体因为其良好的压电特性和温度特性,是目前最好的高温声表面波基片材料,它的出现使无线无源化的高温声表面波传感器成为了可能。叉指电极材料的高温特性也对高温声表面波传感器的性能有着重要的影响,目前对于应用于叉指电极的薄膜材料研究的最为广泛的主要有铂(Pt)、铂合金和Pt‑Rh/ZrO2薄膜等。其中Pt电极因具有良好的电学性能、高熔点、不易氧化等优点被广泛用于高温传感器的应用。然而,当温度超过650℃时,Pt电极薄膜由于再结晶,团聚等因素会发生退化;铂合金,如铂铑合金(Pt‑Rh)、铂铱合金(Pt‑Ir)、铂锆合金(Pt‑Zr)等,其退化温度上升到750℃;Pt‑Rh/ZrO2薄膜的耐高温温度能够达到850℃。但这些材料的退化温度均不能达到1000℃。为了提高声表面波传感器对温度的耐热性,延长声表面波器件在高温(>1000℃)环境下的使用,迫切需要寻找有效地叉指电极材料来改善目前高温声表面波传感器存在的问题。

发明内容

[0004] 本发明的目的是针对现有技术的不足,提供一种具有掺杂氧化物金属渐变层的耐高温电极及其制备方法。
[0005] 本发明采用的技术方案如下:
[0006] 本发明具有掺杂氧化物金属渐变层的耐高温电极,包括衬底、耐高温氧化物层、掺杂氧化物金属渐变层和薄膜层组;所述的衬底上沉积耐高温氧化物层;耐高温氧化物层上沉积间距设置的n层掺杂氧化物金属渐变层,n≥2;每个掺杂氧化物金属渐变层上沉积若干薄膜层组;若薄膜层组的数量大于1,则各薄膜层组上下堆叠;所述的薄膜层组由从上至下排布的掺杂氧化物金属渐变层和薄膜层组成;所述掺杂氧化物金属渐变层的材料为掺杂氧化物的金属。
[0007] 优选地,所述衬底的材料采用硅酸镓镧、钇铁氧体、AlN、GaPO4或GaN。
[0008] 优选地,所述耐高温氧化层的材料为Al2O3、ZrO2、SiO2、Y2O3或HfO2。
[0009] 优选地,所述耐高温氧化层的厚度为5~30nm。
[0010] 优选地,所述掺杂氧化物金属渐变层中的金属材料为Pt、Rh或Ir中的一种或多种按任意配比组合。
[0011] 优选地,所述掺杂氧化物金属渐变层的厚度为20~300nm。
[0012] 优选地,所述掺杂氧化物金属渐变层中氧化物的掺杂浓度处处相等。
[0013] 优选地,所述掺杂氧化物金属渐变层中氧化物的掺杂浓度渐变,最低掺杂浓度为0.01%,最高掺杂浓度为10%。
[0014] 更优选地,当掺杂氧化物金属渐变层中氧化物的掺杂浓度从中间位置向上或向下均逐渐降低时,薄膜层的材料为金属;当掺杂氧化物金属渐变层中氧化物的掺杂浓度从中间位置向上或向下均逐渐升高时,薄膜层的材料为氧化物。
[0015] 该具有掺杂氧化物金属渐变层的耐高温电极的制备方法,包括如下步骤:
[0016] 步骤一、对衬底进行清洗、烘干处理。
[0017] 步骤二、采用原子沉积技术在经步骤一处理后的衬底上沉积一层厚度为5~30nm的耐高温氧化物层。
[0018] 步骤三、采用微电子光刻技术在耐高温氧化物层上制备得到掺杂氧化物金属渐变层图案。
[0019] 步骤四、采用磁控溅射技术对经步骤三光刻处理后的样片进行金属靶材与氧化物靶材的共溅射,在耐高温氧化物层上得到20~300nm厚的掺杂氧化物金属渐变全覆盖层,掺杂氧化物金属渐变全覆盖层中氧化物的掺杂浓度渐变;其中,金属靶材的功率固定不变,氧化物靶材的功率随时间周期变化,从500w降低到300w再升高到500w。
[0020] 步骤五、若掺杂氧化物金属渐变全覆盖层中氧化物的掺杂浓度从中间位置向上或向下均逐渐降低,则采用磁控溅射技术在掺杂氧化物金属渐变全覆盖层上溅射3~15nm厚的金属薄膜全覆盖层;若掺杂氧化物金属渐变全覆盖层中氧化物的掺杂浓度从中间位置向上或向下均逐渐升高,则采用磁控溅射技术在掺杂氧化物金属渐变全覆盖层上溅射3~15nm厚的氧化物薄膜全覆盖层。
[0021] 步骤六、采用磁控溅射技术对经步骤五光刻处理后的样片进行金属靶材与氧化物靶材的共溅射,在氧化物薄膜全覆盖层或金属薄膜全覆盖层上得到20~300nm厚的掺杂氧化物金属渐变全覆盖层。
[0022] 步骤七、将经步骤六处理后的样片泡在丙酮溶液中进行超声处理,使得掺杂氧化物金属渐变全覆盖层上除掺杂氧化物金属渐变层图案位置以外的多余电极以及氧化物薄膜全覆盖层或金属薄膜全覆盖层上除掺杂氧化物金属渐变层图案位置以外的多余电极脱离,从而得到掺杂氧化物金属渐变层和薄膜层。
[0023] 优选地,若薄膜层组的数量k>1,则执行步骤七前,先重复执行步骤五和步骤六k次。
[0024] 本发明与现有技术相比具有以下优点:
[0025] (1)在电极层中加入一层耐高温氧化层,可以有效地阻止高温下电极的熔融与断裂。
[0026] (2)在电极层中掺杂氧化物,可以有效阻止高温下再结晶与晶粒生长,使得电极具有足够高的导电性被应用于高温声表面波器件。
[0027] (3)在电极层中掺杂的氧化物浓度为渐变的,可以有效阻止因薄膜电极材料不同,界面之间应力的变化而引起的薄膜团聚、小丘与晶须,从而提高电极的高温导电性。
[0028] (4)制备得到的耐高温电极,熔点高,耐高温性能显著,能有效改善高温下电极的退化情况,使得制备的声表面波器件能应用于更高的温度,其应用温度可高达1200℃以上。

实施方案

[0034] 下述结合附图对本发明作进一步说明。
[0035] 如图1所示,具有掺杂氧化物金属渐变层的耐高温电极,包括衬底1、耐高温氧化物层2、掺杂氧化物金属渐变层3和薄膜层组;衬底1上沉积耐高温氧化物层2;耐高温氧化物层2上沉积间距设置的n层掺杂氧化物金属渐变层3,n≥2;每个掺杂氧化物金属渐变层3上沉积若干薄膜层组;若薄膜层组的数量大于1,则各薄膜层组上下堆叠;薄膜层组由从上至下排布的掺杂氧化物金属渐变层3和薄膜层4组成;掺杂氧化物金属渐变层3的材料为掺杂氧化物的金属。
[0036] 作为一个优选实施例,衬底1的材料采用硅酸镓镧。
[0037] 作为一个优选实施例,耐高温氧化层的材料为Al2O3、ZrO2、SiO2、Y2O3或HfO2。
[0038] 作为一个优选实施例,耐高温氧化层的厚度为5nm~30nm。
[0039] 作为一个优选实施例,掺杂氧化物金属渐变层3中的金属材料为Pt、Rh、Ir等耐高熔点金属中的一种或者多种按任意配比组合。
[0040] 作为一个优选实施例,掺杂氧化物金属渐变层3的厚度为20~300nm。
[0041] 作为一个优选实施例,掺杂氧化物金属渐变层3中氧化物的掺杂浓度处处相等。
[0042] 作为一个优选实施例,掺杂氧化物金属渐变层3中氧化物的掺杂浓度渐变,最低掺杂浓度为0.01%,最高掺杂浓度为10%。
[0043] 作为一个更优选实施例,当掺杂氧化物金属渐变层3中氧化物的掺杂浓度从中间位置向上或向下均逐渐降低时,薄膜层4的材料为金属,如图3所示,高氧化物掺杂浓度层6上下位置均设有低氧化物掺杂浓度层5;当掺杂氧化物金属渐变层3中氧化物的掺杂浓度从中间位置向上或向下均逐渐升高时,薄膜层4的材料为氧化物,如图2所示,低氧化物掺杂浓度层5上下位置均设有高氧化物掺杂浓度层6。
[0044] 该具有掺杂氧化物金属渐变层的耐高温电极的制备方法,具体如下:
[0045] 实施例1:
[0046] 步骤一、对衬底依次用丙酮、酒精和去离子水超声清洗5min,去除表面的有机污染物,再用氮气吹干。
[0047] 步骤二、将经步骤一处理后的衬底放入原子层沉积系统(型号为美国KurtJ.Lesker公司的ALD150LX)中,抽真空,沉积20nm的耐高温氧化物层。
[0048] 步骤三、在耐高温氧化物层上涂满光刻胶(型号为AR‑P5350),用匀胶‑热板一体机(型号为美国CEE的APOGEE X‑PRO II)完成匀胶与烘烤,再使用光刻机(型号为德国Karl Suss公司的MA6/BA6)进行光刻,形成掩膜,放入显影液(型号为AR300‑26)与水按1:7比例混合的混合液中22s,最后用去离子水洗涤完成显影,得到掺杂氧化物金属渐变层图案。
[0049] 步骤四、将经步骤三光刻处理后的样片放入磁控溅射系统(型号为美国DENTON公司的DISCOVERY635)的基片台上,然后将基片台放入真空室中,进行金属靶材与氧化物靶材的共溅射,在耐高温氧化物层上得到100nm厚的掺杂氧化物金属渐变全覆盖层,掺杂氧化物金属渐变全覆盖层中氧化物的掺杂浓度从中间位置向上或向下均逐渐降低;其中,金属靶材的功率固定不变,氧化物靶材的功率随时间周期变化,从500w降低到300w再升高到500w。
[0050] 步骤五、将步骤四处理后的样片放在磁控溅射系统的基片台上,然后将基片台放入真空室中,在掺杂氧化物金属渐变全覆盖层上溅射10nm厚的金属薄膜全覆盖层。
[0051] 步骤六、将步骤五处理后的样片放在磁控溅射系统的基片台上,然后将基片台放入真空室中,进行金属靶材与氧化物靶材的共溅射,在金属薄膜全覆盖层上得到100nm厚的掺杂氧化物金属渐变全覆盖层,掺杂氧化物金属渐变全覆盖层中氧化物的掺杂浓度从中间位置向上或向下均逐渐降低。
[0052] 步骤七、将经步骤六处理后的样片泡在丙酮溶液中,超声3分钟,因为丙酮与光刻胶互溶,使得掺杂氧化物金属渐变全覆盖层上除掺杂氧化物金属渐变层图案位置以外的多余电极以及金属薄膜全覆盖层上除掺杂氧化物金属渐变层图案位置以外的多余电极脱离,从而得到掺杂氧化物金属渐变层和薄膜层。
[0053] 实施例2:
[0054] 在实施例1基础上,步骤四中,金属靶材为Pt靶材,氧化物靶材为Al2O3靶材。
[0055] 实施例2制备的具有掺杂氧化物金属渐变层的耐高温电极,经过测试,在1200℃下保持1h依旧能维持良好的表面形貌,如图4所示,虽然有一些微小孔洞,但并不影响电极的连续性。从而可以看出本发明的电极结构,耐高温性能强,具有良好的应用前景。
[0056] 实施例3:
[0057] 步骤一、对衬底依次用丙酮、酒精和去离子水超声清洗5min,去除表面的有机污染物,再用氮气吹干。
[0058] 步骤二、将经步骤一处理后的衬底放入原子层沉积系统中,抽真空,沉积20nm的耐高温氧化物层。
[0059] 步骤三、在耐高温氧化物层上涂满光刻胶,用匀胶‑热板一体机完成匀胶与烘烤,再使用光刻机进行光刻,形成掩膜,放入显影液与水按1:7比例混合的混合液中22s,最后用去离子水洗涤完成显影,得到掺杂氧化物金属渐变层图案。
[0060] 步骤四、将经步骤三光刻处理后的样片放入磁控溅射系统(型号为美国DENTON公司的DISCOVERY635)的基片台上,然后将基片台放入真空室中,进行金属靶材与氧化物靶材的共溅射,在耐高温氧化物层上得到100nm厚的掺杂氧化物金属渐变全覆盖层,掺杂氧化物金属渐变全覆盖层中氧化物的掺杂浓度从中间位置向上或向下均逐渐升高;其中,金属靶材的功率固定不变,氧化物靶材的功率随时间周期变化,从500w降低到300w再升高到500w。
[0061] 步骤五、将步骤四处理后的样片放在磁控溅射系统的基片台上,然后将基片台放入真空室中,在掺杂氧化物金属渐变全覆盖层上溅射10nm厚的氧化物薄膜全覆盖层。
[0062] 步骤六、将步骤五处理后的样片放在磁控溅射系统的基片台上,然后将基片台放入真空室中,进行金属靶材与氧化物靶材的共溅射,在氧化物薄膜全覆盖层上得到100nm厚的掺杂氧化物金属渐变全覆盖层,掺杂氧化物金属渐变全覆盖层中氧化物的掺杂浓度从中间位置向上或向下均逐渐升高。
[0063] 步骤七、将经步骤六处理后的样片泡在丙酮溶液中,超声3分钟,因为丙酮与光刻胶互溶,使得掺杂氧化物金属渐变全覆盖层上除掺杂氧化物金属渐变层图案位置以外的多余电极以及氧化物薄膜全覆盖层上除掺杂氧化物金属渐变层图案位置以外的多余电极脱离,从而得到掺杂氧化物金属渐变层和薄膜层。
[0064] 实施例3制备的电极的扫描电子显微镜图与图4无实质性的差别,虽有一些小孔洞出现,但电极依旧保持连续性。

附图说明

[0029] 图1是本发明制备的耐高温电极剖面示意图;
[0030] 图2是本发明的掺杂氧化物金属渐变层中氧化物的掺杂浓度从中间位置向上或向下均逐渐升高的示意图;
[0031] 图3是本发明的掺杂氧化物金属渐变层中氧化物的掺杂浓度从中间位置向上或向下均逐渐降低的示意图;
[0032] 图4是本发明实施例2制备的电极在1200℃保持1h后的扫描电子显微镜(SEM)图;
[0033] 图中:1、衬底,2、耐高温氧化层,3、掺杂氧化物金属渐变层,4、薄膜层,5、低氧化物掺杂浓度层,6、高氧化物掺杂浓度层。
版权所有:盲专网 ©2023 zlpt.xyz  蜀ICP备2023003576号