首页 > 专利 > 杭州电子科技大学 > 一种基于动态置信规则库的变频器冷却水泵故障报警方法专利详情

一种基于动态置信规则库的变频器冷却水泵故障报警方法   0    0

有效专利 查看PDF
专利申请流程有哪些步骤?
专利申请流程图
申请
申请号:指国家知识产权局受理一件专利申请时给予该专利申请的一个标示号码。唯一性原则。
申请日:提出专利申请之日。
2019-09-26
申请公布
申请公布指发明专利申请经初步审查合格后,自申请日(或优先权日)起18个月期满时的公布或根据申请人的请求提前进行的公布。
申请公布号:专利申请过程中,在尚未取得专利授权之前,国家专利局《专利公报》公开专利时的编号。
申请公布日:申请公开的日期,即在专利公报上予以公开的日期。
2020-01-14
授权
授权指对发明专利申请经实质审查没有发现驳回理由,授予发明专利权;或对实用新型或外观设计专利申请经初步审查没有发现驳回理由,授予实用新型专利权或外观设计专利权。
2020-09-25
预估到期
发明专利权的期限为二十年,实用新型专利权期限为十年,外观设计专利权期限为十五年,均自申请日起计算。专利届满后法律终止保护。
2039-09-26
基本信息
有效性 有效专利 专利类型 发明专利
申请号 CN201910917439.3 申请日 2019-09-26
公开/公告号 CN110597232B 公开/公告日 2020-09-25
授权日 2020-09-25 预估到期日 2039-09-26
申请年 2019年 公开/公告年 2020年
缴费截止日
分类号 G05B23/02 主分类号 G05B23/02
是否联合申请 独立申请 文献类型号 B
独权数量 1 从权数量 0
权利要求数量 1 非专利引证数量 0
引用专利数量 7 被引证专利数量 0
非专利引证
引用专利 CN109474607A、CN103411204A、CN101476486A、CN101335752A、KR20160019681A、WO2018158965A1、CN109145972A 被引证专利
专利权维持 3 专利申请国编码 CN
专利事件 事务标签 公开、实质审查、授权
申请人信息
申请人 第一申请人
专利权人 杭州电子科技大学 当前专利权人 杭州电子科技大学
发明人 徐晓滨、俞卓辰、侯平智、曾九孙、胡燕祝、黄大荣、韩德强 第一发明人 徐晓滨
地址 浙江省杭州市经济技术开发区白杨街道2号大街 邮编 310018
申请人数量 1 发明人数量 7
申请人所在省 浙江省 申请人所在市 浙江省杭州市
代理人信息
代理机构
专利代理机构是经省专利管理局审核,国家知识产权局批准设立,可以接受委托人的委托,在委托权限范围内以委托人的名义办理专利申请或其他专利事务的服务机构。
浙江千克知识产权代理有限公司 代理人
专利代理师是代理他人进行专利申请和办理其他专利事务,取得一定资格的人。
周希良
摘要
本发明公开了一种基于动态置信规则库的变频器冷却水泵故障报警方法,属于设备状态监测与故障诊断技术领域。本发明将变频器冷却单元水泵转速、流体流速作为置信规则库报警模型的输入,水泵进出口流体之间的压力差作为模型的输出,建立置信规则库报警模型。假设模型参数符合正态分布,给定初始时刻的模型参数,根据上一时刻模型参数动态决定当前时刻的置信规则库报警模型参数,得到当前时刻的预测值。同时本发明将当前时刻的预测值与真实值的误差作为区分故障发生与否的新特征,通过将误差与报警阈值比较,来决定是否更新模型参数。本发明模型更新速度快,能及时对变频器冷却单元水泵的故障做出报警,便于工程实现。
  • 摘要附图
    一种基于动态置信规则库的变频器冷却水泵故障报警方法
法律状态
序号 法律状态公告日 法律状态 法律状态信息
1 2020-09-25 授权
2 2020-01-14 实质审查的生效 IPC(主分类): G05B 23/02 专利申请号: 201910917439.3 申请日: 2019.09.26
3 2019-12-20 公开
权利要求
权利要求书是申请文件最核心的部分,是申请人向国家申请保护他的发明创造及划定保护范围的文件。
1.一种基于动态置信规则库的变频器冷却水泵故障报警方法,其特征在于该方法包括以下步骤:
(1)设x1(t)为t时刻变频器冷却水泵转速变量值,其单位为r/s2,x2(t)为t时刻水泵流体流速变量值,其单位为m/s,y(t)为t时刻水泵进出口流体之间的压力差变量值,其单位为Mpa,每隔1-3s采样一次,共采集TS次,TS>5000,则采样时刻t=1,2,…,TS;
(2)将水泵转速变量x1和水泵流体流速变量x2作为置信规则库报警模型的输入,输入参考值集合 其中 Jn为参考值个数,水泵进
出口流体之间的压力差变量y作为置信规则库报警模型的输出,输出参考值集合D={Di|i=1,2,…,N},其中D1(2-1)构建的规则库,由L条规则组成,其中的第k条规则描述为:
式中:Ak1表示在第k条规则中输入变量水泵转速的参考值,且有 Ak2表示在第k条规则中输入变量水泵流体流速的参考值,且有 L=J1×J2;mi,k为Di对应的规则置信度,满足
(2-2)对于某个t时刻获取的采样数据x1(t)和x2(t),计算x1(t)、x2(t)相对于各自参考值的匹配度:
(a)当 或 时,xn(t)对 和 的匹配度αn,1、 取值均为1,对于其
他参考值的匹配度均为0;
(b)当 时,p=1,2,…,Jn-1,xn(t)对于 和 的匹配度由式(2)和(3)给
出:
此时,输入变量xn(t)对于其他参考值的匹配度均为0;
(2-3)根据步骤(2-2)得到的匹配度计算输入x1(t)和x2(t)所激活的规则权重其中 为输入 与第k条规则下各自对应的参考值 的匹配度, 为第k
条证据的权重, 为第M1个输入的可靠度;
(2-4)根据步骤(2-3)得到的规则权重 后,将激活的规则置信度mi,k进行融合,融合公式如下:
(2-5)由式(6)算出水泵进出口流体之间的压力差
(3)当t=1时,根据真实测得的水泵转速、水泵流体流速和水泵进出口流体之间的压力差,给定t=1时刻初始的模型可调参数集合 其中An,t为t时刻模型
t t
输入的参考值集合,D为t时刻模型输出的参考值集合, 为t时刻模型中D中每一个输出参考值所对应的置信度, 为t时刻模型中第k条规则的权重, 为t时刻模型中第n个输入的可靠度;
(4)当t>1时,假设Qt中所有可调参数符合正态分布,具体满足如下分布:
其中 是An,t的方差, 是Dt的方差, 是 的方差, 是 的方差,
是 的方差,从上述分布中随机采样R组模型参数 R≥10,将t时刻输入x1(t)、x2(t)按照步骤(2)计算t时刻第l组模型的估计值
(5)根据下式(7)计算第l组模型的权重φl
其中y(t-1)是t-1时刻水泵进出口流体之间的压力差的实测值,σ为给定的φl的方差;
(6)根据下式(8)对第l组模型的权重φl进行归一化处理得到
(7)根据步骤(6)得到的归一化后权重 计算前ls个 的累加值,记为sum(ls),ls=1,2,…,R,从均匀分布U(0,1)随机采样lu次,每次采得的值记为u(lu),lu=1,2,…,R,对于每一个u(lu),找到权重的累加值sum(ls)中第一个大于u(lu)值的下标ls,此时新的第lu组的模型参数等于原来的第ls组的模型参数,R次随机采样结束后得到新的R组模型参数,此时每组模型参数的权重变为1/R;
(8)根据步骤(7)得到的新的R组模型参数以及每组模型参数的权重计算Qt:
(9)使用步骤(8)得到的模型参数按照步骤(2)计算水泵进出口流体之间的压力差预测值 之后根据实际测得的t时刻水泵进出口流体之间的压力差实测值计算二者之间的误差err(t):
(10)给定报警阈值yotp,判断err(t)是否大于给定报警阈值yotp,如果大于,则产生报警,同时t+1时刻模型参数不再更新,继续沿用t时刻模型参数对t时刻进行预测;如果不大于,则不报警,按步骤(4)到步骤(9)继续更新。
说明书

技术领域

[0001] 本发明涉及一种基于动态置信规则库的变频器冷却水泵故障报警方法,属于工业设备状态监测与故障诊断技术领域。

背景技术

[0002] 随着电力电子技术的快速发展和船舶推进技术的进步,综合电力推进系统在舰船上应用越来越广泛,使电力推进船舶在机动性、可靠性、布置的灵活性、机桨匹配、运行效率等方面都有了极大的提高,从而使船舶电力推进技术的应用范围不断扩大。作为船舶主动力系统的电力推进系统,由于其高效率、高可靠性、高自动化以及低维护,正成为新世纪大型水面船舶青睐的主推进系统。电力推进系统通常包括主发电机组、推进变压器、推进变频器和推进电动机等,而变频器作为船舶关键设备之一,其可靠性和安全性对推进系统正常运行至关重要,对船舶安全行驶影响巨大。
[0003] 然而,变频器属于大功率电气设备,工作时会产生大量热量,为保证设备的正常工作,需要把大量的热量散发出去,实现设备的高效散热,这对于提高设备的可靠性是非常必要的。在复杂的船舶工作环境中,水冷装置对变频器及其重要,一旦水冷系统出现问题,将会对变频器造成灾难性后果。对变频器冷却装置的水泵进行监测与报警能及时发现水冷装置故障,增加船舶行驶安全性,减少人员财产损失,因此研究船舶电力推进系统变频器冷却装置水泵故障报警方法能为电力推进系统船舶安全行驶提供保障。

发明内容

[0004] 本发明针对现有技术的不足,提出了一种基于动态置信规则库的变频器冷却水泵故障报警方法。
[0005] 本发明的主要技术构思:将变频器冷却单元水泵转速、流体流速作为动态置信规则库报警模型的输入,水泵进出口流体之间的压力差作为模型的输出,建立动态置信规则库报警模型。假设模型参数符合正态分布,给定初始时刻的模型参数,根据上一时刻模型参数动态变化决定当前时刻的置信规则库报警模型参数,得到当前时刻的预测值,计算当前时刻预测值与实测值的误差并与给定的报警阈值比较,进行决策,判断是否报警、是否更新下一时刻的置信规则库报警模型参数。该方法模型更新速度快,能及时发现变频器冷却单元水泵故障产生报警,便于工程实现。本发明包括以下各步骤:
[0006] (1)设x1(t)为t时刻变频器冷却水泵转速变量值,其单位为r/s2,x2(t)为t时刻水泵流体流速变量值,其单位为m/s,y(t)为t时刻水泵进出口流体之间的压力差变量值,其单位为Mpa,每隔1-3s采样一次,共采集TS次,一般TS>5000,则采样时刻t=1,2,…,TS;
[0007] (2)将水泵转速变量x1和水泵流体流速变量x2作为置信规则库报警模型的输入,输入参考值集合 n=1,2,其中 Jn为参考值个数,水泵进出口流体之间的压力差变量y作为置信规则库报警模型的输出,输出参考值集合D={Di|i=1,2,…,N},其中D1
[0008] (2-1)所构建的规则库,由L条规则组成,其中的第k条规则描述为:
[0009]
[0010] 式中:Ak1表示在第k条规则中输入变量水泵转速的参考值,且有 Ak2表示在第k条规则中输入变量水泵流体流速的参考值,且有 L=J1×J2;mi,k为Di对应的规则置信度,满足
[0011] (2-2)对于某个t时刻获取的采样数据x1(t)和x2(t),计算x1(t)、x2(t)相对于各自参考值的匹配度:
[0012] (a)当 或 时,xn(t)对 和 的匹配度αn,1、 取值均为1,对于其他参考值的匹配度均为0;
[0013] (b)当 时,p=1,2,…,Jn-1,xn(t)对于 和 的匹配度由式(2)和(3)给出:
[0014]
[0015]
[0016] 此时,输入变量xn(t)对于其他参考值的匹配度均为0;
[0017] (2-3)根据步骤(2-2)得到的匹配度计算输入x1(t)和x2(t)所激活的规则权重[0018]
[0019] 其中 为输入 与第k条规则下各自对应的参考值 的匹配度, 为第k条证据的权重, 为第M1个输入的可靠度;
[0020] (2-4)根据步骤(2-3)得到的规则权重 后,将激活的规则置信度mi,k进行融合,融合公式如下:
[0021]
[0022] (2-5)由式(6)算出水泵进出口流体之间的压力差
[0023]
[0024] (3)当t=1时,根据真实测得的水泵转速、水泵流体流速和水泵进出口流体之间的压力差,给定t=1时刻初始的模型可调参数集合 其中An,t为t时刻t t
模型输入的参考值集合,D为t时刻模型输出的参考值集合, 为t时刻模型中D中每一个输出参考值所对应的置信度, 为t时刻模型中第k条规则的权重, 为t时刻模型中第n个输入的可靠度;
[0025] (4)当t>1时,假设Qt中所有可调参数符合正态分布,具体满足如下分布:n,t t
其中 是A 的方差, 是D 的方差, 是 的方差, 是 的方差,
是 的方差,从上述分布中随机采样R组模型参数 l=1,2,…,R,一般R≥10,将t时刻输入x1(t)、x2(t)按照步骤(2)计算t时刻第l组模型的估计值 即压力差;
[0026] (5)根据下式(7)计算第l组模型的权重φl
[0027]
[0028] 其中y(t-1)是t-1时刻水泵进出口流体之间的压力差的实测值,σ为给定的φl的方差;
[0029] (6)根据下式(8)对第l组模型的权重φl进行归一化处理得到
[0030]
[0031] (7)根据步骤(6)得到的归一化后权重 计算前ls个 的累加值,记为sum(ls),ls=1,2,…,R,从均匀分布U(0,1)随机采样lu次,每次采得的值记为u(lu),lu=1,
2,…,R,对于每一个u(lu),找到权重的累加值sum(ls)中第一个大于u(lu)值的下标ls,此时新的第lu组的模型参数等于原来的第ls组的模型参数,R次随机采样结束后得到新的R组模型参数,此时每组模型参数的权重变为1/R;
[0032] (8)根据步骤(7)得到的新的R组模型参数以及每组模型参数的权重计算Qt:
[0033]
[0034] (9)使用步骤(8)得到的模型参数按照步骤(2)计算水泵进出口流体之间的压力差预测值 之后根据实际测得的t时刻水泵进出口流体之间的压力差实测值计算二者之间的误差err(t):
[0035]
[0036] (10)给定报警阈值yotp,判断err(t)是否大于给定报警阈值yotp,如果大于,则产生报警,同时t+1时刻模型参数不再更新,继续沿用t时刻模型参数对t时刻进行预测;如果不大于,则不报警,按步骤(4)到步骤(9)继续更新。
[0037] 本发明的有益效果:本发明设计的动态置信规则库的变频器冷却水泵故障报警方法能实时更新置信规则库报警模型参数,描述变频器冷却单元水泵转速、水泵流体流速与水泵进出口流体之间的压力差之间的复杂的非线性关系。同时本发明将模型误差作为区分故障发生与否的新特征,通过将误差与报警阈值比较,来决定是否更新模型参数来决定是否更新模型参数,能有效地对水泵发生的故障做到报警,达到了良好的效果。

实施方案

[0042] 本发明提出的一种基于动态置信规则库的变频器冷却水泵故障报警方法,其总体流程框图如图1所示,包括以下各步骤:
[0043] 以下各步骤:
[0044] (1)设x1(t)为t时刻变频器冷却水泵转速变量值,其单位为r/s2,x2(t)为t时刻水泵流体流速变量值,其单位为m/s,y(t)为t时刻水泵进出口流体之间的压力差变量值,其单位为Mpa,每隔1-3s采样一次,共采集TS次,一般TS>5000,则采样时刻t=1,2,…,TS。
[0045] (2)将水泵转速变量x1和水泵流体流速变量x2作为置信规则库报警模型的输入,输入参考值集合 n=1,2,其中 Jn为参考值个数,水泵进出口流体之间的压力差变量y作为置信规则库报警模型的输出,输出参考值集合D={Di|i=1,2,…,N},其中D1
[0046] (2-1)所构建的规则库,由L条规则组成,其中的第k条规则描述为:
[0047]
[0048] 式中:Ak1表示在第k条规则中输入变量水泵转速的参考值,且有 Ak2表示在第k条规则中输入变量水泵流体流速的参考值,且有 L=J1×J2;mi,k为Di对应的规则置信度,满足
[0049] (2-2)对于某个t时刻获取的采样数据x1(t)和x2(t),计算x1(t)、x2(t)相对于各自参考值的匹配度:
[0050] (a)当 或 时,xn(t)对 和 的匹配度αn,1、 取值均为1,对于其他参考值的匹配度均为0。
[0051] (b)当 时,p=1,2,…,Jn-1,xn(t)对于 和 的匹配度由式(2)和(3)给出:
[0052]
[0053]
[0054] 此时,输入变量xn(t)对于其他参考值的匹配度均为0。
[0055] (2-3)根据步骤(2-2)得到的匹配度计算输入x1(t)和x2(t)所激活的规则权重[0056]
[0057] 其中 为输入 与第k条规则下各自对应的参考值 的匹配度, 为第k条证据的权重, 为第M1个输入的可靠度。
[0058] (2-4)根据步骤(2-3)得到的规则权重 后,将激活的规则置信度mi,k进行融合,融合公式如下:
[0059]
[0060] (2-5)由式(6)算出水泵进出口流体之间的压力差
[0061]
[0062] 为了便于理解,这里对步骤(2)举例说明,水泵转速x1的参考值集合为A1={5.8501,8.5078,10.8977},水泵转速x1的可靠度λ1=0.5033,水泵流体流速x2的参考值集合A2={5.0765,7.2414,9.3012,11.4565},水泵流体流速x2的可靠度λ2=0.4945,水泵进出口流体之间的压力差的参考集合为D={2.0978,3.7939,5.2791,6.6373,8.3564},共建立12条规则,如表1所示。每条规则的权重如表2所示。
[0063] 表1报警模型规则库
[0064]
[0065]
[0066] 表2规则库规则权重
[0067]
[0068] 当t=1时刻获取的采样数据x1(1)=7.9871、x2(1)=8.3455,根据步骤(2-2)求得每个参考值的匹配度,α1,1=0.0611,α1,2=0.9389,α1,3=0,α2,1=0,α2,1=0.6380,α2,1=0.3620,α2,1=0,由此可见激活了产生式规则库中的四条规则分别为第2条规则、第3条规则、第6条规则和第7条规则。由式(4)可求得各个被激活的规则权重分别为
根据式(5)得到融合结果m1=0.1975,m2=
0.1878,m3=0.2105,m4=0.2071,m5=0.1971,根据式(6)得到水泵进出口流体之间的压力差
[0069] (3)当t=1时,根据真实测得的水泵转速、水泵流体流速和水泵进出口流体之间的压力差,给定t=1时刻初始的模型可调参数集合 其中An,t为t时刻模型输入的参考值集合,Dt为t时刻模型输出的参考值集合, 为t时刻模型中Dt中每一个输出参考值所对应的置信度, 为t时刻模型中第k条规则的权重, 为t时刻模型中第n个输入的可靠度。
[0070] (4)当t>1时,假设Qt中所有可调参数符合正态分布,具体满足如下分布:n,t t
其中 是A 的方差, 是D的方差, 是 的方差, 是 的方差,
是 的方差,从上述分布中随机采样R组模型参数 l=1,2,…,R,一般R≥10,将t时刻输入x1(t)、x2(t)按照步骤(2)计算t时刻第l组模型的估计值 即压力差。
[0071] (5)根据下式(7)计算第l组模型的权重φl
[0072]
[0073] 其中y(t-1)是t-1时刻水泵进出口流体之间的压力差的实测值,σ为给定的φl的方差。
[0074] (6)根据下式(8)对第l组模型的权重φl进行归一化处理得到
[0075]
[0076] (7)根据步骤(6)得到的归一化后权重 计算前ls个 的累加值,记为sum(ls),ls=1,2,…,R,从均匀分布U(0,1)随机采样lu次,每次采得的值记为u(lu),lu=1,
2,…,R,对于每一个u(lu),找到权重的累加值sum(ls)中第一个大于u(lu)值的下标ls,此时新的第lu组的模型参数等于原来的第ls组的模型参数,R次随机采样结束后得到新的R组模型参数,此时每组模型参数的权重变为1/R。
[0077] (8)根据步骤(7)得到的新的R组模型参数以及每组模型参数的权重计算Qt:
[0078]
[0079] (9)使用步骤(8)得到的模型参数按照步骤(2)计算水泵进出口流体之间的压力差预测值 之后根据实际测得的t时刻水泵进出口流体之间的压力差实测值计算二者之间的误差err(t):
[0080]
[0081] (10)给定报警阈值yotp,判断err(t)是否大于给定报警阈值yotp,如果大于,则产生报警,同时t+1时刻模型参数不再更新,继续沿用t时刻模型参数对t时刻进行预测;如果不大于,则不报警,按步骤(4)到步骤(9)继续更新。
[0082] 为了加深对更新的理解,这里举例加以说明,给定报警阈值yotp=0.11,当t=1时,x1(1)=7.9871、x2(1)=8.3455,给定初始的模型可调参数集合Q1的参数值沿用前例中的参数值,y(1)=5.3143,当t=2时,x1(2)=7.9893、x2(2)=8.3468,A1,2~N(A1,1,0.4),A2,2~N(A2,1,0.3),D2~N(D1,0.3), 从中随机采样得到10组模型参数 计算10组模型的估计值,根据步骤(5)计算每组模型参数权重,根据步骤(6)将得到的10组权重归一化,根据步骤(7)得到新的10组模型参数,根据式(9)计算得到最后用来预测的t=2时刻的模型参数Q2,根据步骤(2)计算出水泵进出口流体之间的压力差模型预测值 水泵进出口流体之间的压力差实测值y(2)=5.3143,根据
式(10)计算得到err(2)=0.03761,3 1,2 2,3 2,2 3 2
8.3372,A ~N(A ,0.4),A ~N(A ,0 .3),D ~N(D ,0 .3),
从中随机采样得到10组模型参数
计算10组模型的估计值,根据步骤(5)计算每组模型参数权重,根据步骤(6)将得到的10组权重归一化,根据步骤(7)得到新的10组模型参数,根据式(9)计算得到最后用来预测的t=
3时刻的模型参数Q3,根据步骤(2)计算出水泵进出口流体之间的压力差预测值
水泵进出口流体之间的压力差实测值y(3)=5.3143,根据式(10)计算得到
err(3)=0.0159
[0083] 以下结合附图,详细的介绍本发明方法的实施例:
[0084] 本发明方法的主要流程图如图1所示,其主要内容为:将变频器冷却单元水泵转速、流体流速作为置信规则库报警模型的输入,水泵进出口流体之间的压力差作为模型的输出,建立置信规则库报警模型。假设模型参数符合正态分布,给定初始时刻的模型参数,根据上一时刻模型参数动态决定当前时刻的置信规则库报警模型参数,得到当前时刻的预测值。同时将当前时刻的预测值与实测值的误差作为区分故障发生与否的新特征,通过将误差与报警阈值比较,来决定是否更新模型参数。
[0085] 以下结合某电力推进船舶主推进电机的变频器水冷单元ACS800-1007LC的冷却水泵,介绍本发明的相关详细步骤,并通过实验结果动态置信规则库的变频器冷却水泵故障报警方法的性能
[0086] 1、在线获取变频器水冷单元ACS800-1007LC的冷却水泵转速变量值x1(t),水泵流体流速变量值x2(t),水泵进出口流体之间的压力差变量值y(t),每隔3s采样一次,共采集5000次,给定报警阈值yotp=0.009。图2所示的压力差采样序列y(t)中,y(1)到y(3040)的样本数据处于正常的工作状态,y(3041)到y(3400)的样本数据是异常停机发生前的状态,y(3401)到y(5000)的样本数据处于异常停机状态。
[0087] 2、建立置信规则库报警模型,进行动态更新。t=1时,给定初始的模型可调参数集合 A1,1={5.8501,8.5078,10.8977},A2.1={5.0765,7.2414,9.3012,11.4565}, 水泵进出口流体之间的压力差的参考集合为D1
={2.0978,3.7939,5.2791,6.6373,8.3564}, 由表3所示, 由表4所示。给定报警阈值yotp=0.009,t=2时, R=1000,
按照步骤(4)到步骤(10)进行更新,直到t=5000。图3是水泵进出口流体之间的压力差模型预测值 与实测值y(t)的误差er r(t)的序列图。图4是err(t)与给定报警阈值比较后的报警结果图,从最后的报警结果可以看出,当t=3054时开始报警,之后一直处于报警状态,说明在冷却水泵异常停机发生前,能及时发出报警,验证了本发明方法的有效性。
[0088] 表3报警模型初始规则库
[0089]
[0090] 表4初始规则库规则权重
[0091]

附图说明

[0038] 图1是本发明方法的总体流程框图。
[0039] 图2是本发明方法的实施例中水泵进出口流体之间的压力差变量值y(t)序列图。
[0040] 图3是本发明方法的实施例中误差err(t)序列图。
[0041] 图4是本发明方法的实施例中报警序列图。
版权所有:盲专网 ©2023 zlpt.xyz  蜀ICP备2023003576号