首页 > 专利 > 安徽工业大学 > 一种含有硫氧双阴离子的岩盐型高熵负极材料及制备方法专利详情

一种含有硫氧双阴离子的岩盐型高熵负极材料及制备方法   0    0

有效专利 查看PDF
专利申请流程有哪些步骤?
专利申请流程图
申请
申请号:指国家知识产权局受理一件专利申请时给予该专利申请的一个标示号码。唯一性原则。
申请日:提出专利申请之日。
2020-12-18
申请公布
申请公布指发明专利申请经初步审查合格后,自申请日(或优先权日)起18个月期满时的公布或根据申请人的请求提前进行的公布。
申请公布号:专利申请过程中,在尚未取得专利授权之前,国家专利局《专利公报》公开专利时的编号。
申请公布日:申请公开的日期,即在专利公报上予以公开的日期。
2021-04-23
授权
授权指对发明专利申请经实质审查没有发现驳回理由,授予发明专利权;或对实用新型或外观设计专利申请经初步审查没有发现驳回理由,授予实用新型专利权或外观设计专利权。
2021-12-07
预估到期
发明专利权的期限为二十年,实用新型专利权期限为十年,外观设计专利权期限为十五年,均自申请日起计算。专利届满后法律终止保护。
2040-12-18
基本信息
有效性 有效专利 专利类型 发明专利
申请号 CN202011504478.X 申请日 2020-12-18
公开/公告号 CN112614986B 公开/公告日 2021-12-07
授权日 2021-12-07 预估到期日 2040-12-18
申请年 2020年 公开/公告年 2021年
缴费截止日
分类号 H01M4/48H01M4/52H01M4/58H01M10/0525 主分类号 H01M4/48
是否联合申请 独立申请 文献类型号 B
独权数量 1 从权数量 7
权利要求数量 8 非专利引证数量 1
引用专利数量 1 被引证专利数量 0
非专利引证 1、2017.11.23CN 110903084 A,2020.03.24占亮.Co3O4基纳米线作为锂离子电池负极材料的研究《.中国博士学位论文全文数据库 工程科技Ⅱ辑》.2017,(第02期),Abhishek Sarkar等.Nanocrystallinemulticomponent entropy stabilisedtransition metal oxides《.Journal of theEuropean Ceramic Society》.2016,第37卷(第2期),AQ Mao等.Solution combustionsynthesis and magnetic property of rock-salt (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide nanocrystalline powder. 《JOURNAL OF MAGNETISM AND MAGNETICMATERIALS》.2019,第484卷B Breitun等.Gassing Behavior of High-Entropy Oxide Anode and OxyfluorideCathode Probed Using DifferentialElectrochemical Mass Spectrometry. 《BATTERIES & SUPERCAPS》.2020,第3卷(第4期),;
引用专利 US2017338482A 被引证专利
专利权维持 1 专利申请国编码 CN
专利事件 事务标签 公开、实质审查、授权
申请人信息
申请人 第一申请人
专利权人 安徽工业大学 当前专利权人 安徽工业大学
发明人 冒爱琴、王鹏鹏、马瑞奇、郑翠红、俞海云、林娜 第一发明人 冒爱琴
地址 安徽省马鞍山市湖东路59号 邮编 243002
申请人数量 1 发明人数量 6
申请人所在省 安徽省 申请人所在市 安徽省马鞍山市
代理人信息
代理机构
专利代理机构是经省专利管理局审核,国家知识产权局批准设立,可以接受委托人的委托,在委托权限范围内以委托人的名义办理专利申请或其他专利事务的服务机构。
安徽顺超知识产权代理事务所 代理人
专利代理师是代理他人进行专利申请和办理其他专利事务,取得一定资格的人。
徐文恭
摘要
本发明公开了锂离子离子电池负极材料技术领域的一种含有硫氧双阴离子的岩盐型高熵负极材料及制备方法,其化学式为(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O1‑xSx,其中x的值为0.02‑0.08;本发明通过在岩盐型(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O高熵氧化物中固溶进一定量的金属硫化物,制备了含有硫氧双阴离子的岩盐型高熵锂离子负极材料,进一步提高该高熵氧化物锂离子负极材料的储锂性能,同时通过精准调控阴离子S的含量,进而调控(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O1‑xSx负极材料的电化学性能,满足其特殊使用要求;在制备时,采用液相配料,确保原料达到分子水平混匀,产物实现了化学计量比。
  • 摘要附图
    一种含有硫氧双阴离子的岩盐型高熵负极材料及制备方法
  • 说明书附图:图1
    一种含有硫氧双阴离子的岩盐型高熵负极材料及制备方法
  • 说明书附图:图2
    一种含有硫氧双阴离子的岩盐型高熵负极材料及制备方法
  • 说明书附图:图3
    一种含有硫氧双阴离子的岩盐型高熵负极材料及制备方法
法律状态
序号 法律状态公告日 法律状态 法律状态信息
1 2021-12-07 授权
2 2021-04-23 实质审查的生效 IPC(主分类): H01M 4/48 专利申请号: 202011504478.X 申请日: 2020.12.18
3 2021-04-06 公开
权利要求
权利要求书是申请文件最核心的部分,是申请人向国家申请保护他的发明创造及划定保护范围的文件。
1.一种含有硫氧双阴离子的岩盐型高熵负极材料,其特征在于,其化学式为(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O1‑xSx,其中x的值为0.02‑0.08;
制备方法包括以下步骤:
(1)按照分子式(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O1‑xSx,以其化学计量比称取等摩尔量的金属硝酸盐,溶于蒸馏水中,在室温下搅拌均匀,得到含有金属硝酸盐的混合溶液;
(2)称取硫代乙酰胺或硫化铵溶于氨水溶液中,在室温下搅拌均匀,得到碱性硫源溶液;
(3)将步骤(1)中含有金属硝酸盐的混合溶液加入到步骤(2)所得到的碱性硫源溶液中,在加热条件下进行磁力搅拌,离心分离后得到含有硫氧双阴离子的岩盐型高熵材料前驱体;
(4)将得到的含有硫氧双阴离子的岩盐型高熵材料前驱体进行高温煅烧,煅烧结束后,直接从反应温度下取出空冷,制得含有硫氧双阴离子的岩盐型高熵锂离子负极材料。

2.根据权利要求1所述的一种含有硫氧双阴离子的岩盐型高熵负极材料,其特征在于,步骤(1)中,所述金属硝酸盐包括Mg(NO3)2·6H2O、Co(NO3)2·6H2O、Cu(NO3)2·3H2O、Ni(NO3)2·6H2O和Zn(NO3)2·6H2O。

3.根据权利要求2所述的一种含有硫氧双阴离子的岩盐型高熵负极材料,其特征在于,步骤(1)中,所述含有金属硝酸盐的混合溶液的浓度为0.5‑1.5mol/L。

4.根据权利要求1所述的一种含有硫氧双阴离子的岩盐型高熵负极材料,其特征在于,步骤(2)中,所述硫源是硫代乙酰胺或硫化铵,且所述硫源与步骤(1)中总的金属阳离子的摩尔比为0.02‑0.08:1。

5.根据权利要求1所述的一种含有硫氧双阴离子的岩盐型高熵负极材料,其特征在于,步骤(2)中,所述碱性硫源溶液的pH在10‑12之间。

6.根据权利要求1所述的一种含有硫氧双阴离子的岩盐型高熵负极材料,其特征在于,步骤(3)中,所述加热温度为50‑90℃,搅拌时间为1.5‑3h。

7.根据权利要求1所述的一种含有硫氧双阴离子的岩盐型高熵负极材料,其特征在于,步骤(4)中,加热设备具有较快的升降温速度,且在空气气氛敞口条件下保温性能好。

8.根据权利要求1所述的一种含有硫氧双阴离子的岩盐型高熵负极材料,其特征在于,步骤(4)中,所述煅烧温度为850‑1000℃,煅烧时间为1‑5h。
说明书

技术领域

[0001] 本发明涉及锂离子离子电池负极材料技术领域,具体为一种含有硫氧双阴离子的岩盐型高熵负极材料及制备方法。

背景技术

[0002] 过渡金属硫化物因其具有独特的物理和化学性质以及较高的理论比容量,且材料的金属‑硫键结合力弱,有利于储锂的转化反应,被认为是有前景的锂离子电池负极材料。但是大量研究表明过渡金属硫化物材料在循环过程中存在体积膨胀、结构破坏等缺点,限制了其作为锂离子电池负极材料的应用。
[0003] 近年来发展起来的过渡金属高熵氧化物(transition‑metal‑based high‑entropy oxides,TM‑HEOs)具有高构型熵稳定的晶体结构和逐步的锂储存特性,使其在循环过程中保持了结构的完整性,表现出更优异的锂离子存储性能和高效的循环稳定性,成为电极材料的研究热点。目前关于HEOs锂离子电池负极材料的研究主要集中于岩盐结构的(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O高熵氧化物。2018年,Sarkar等采用喷雾热解法制备了(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O高熵氧化物粉体材料,并首次以该材料作为负极材料、LiNi1/‑13Co1/3Mn1/3O2作为正极材料,对其电化学性能进行了研究,测试结果表明:在200mA g 电流‑1 ‑1
密度下,首次放电比容量接近1000mAh g ,且在300次充放电后,容量依旧高于600mAh g ;
‑1
而传统的过渡金属氧化物在循环100次之后容量则低于400mAh g ,循环稳定性远不及HEOs电极材料。此外,该高熵氧化物还展示了优异的倍率性能(A.Sarkar,L.Velasco,D.Wang,Q.Wang,G.Talasila,L.de Biasi,C.Kübel,T.Brezesinski,S.S.Bhattacharya,H.Hahn,B.Breitung,Nature Communications 9(2018)3400‑3409.)。此后,Wang等采用机械球磨+‑1
固相烧结法制备了该岩盐结构的高熵氧化物,电化学研究表明:在100mA g 电流密度下,首‑1 ‑1
次充放电比容量为976/1585mAh g ,300次循环后的可逆比容量仍然高达1000mAh g(N.Qiu,H.Chen,Z.Yang,S.Sun,Y.Wang,Y.Cui,A high  entropy oxide
(Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O)with superior lithium storage performance,J.Alloys Compd.,777(2019)767‑774.)。上述研究结果表明:通过改变制备方法来控制该岩盐结构高熵氧化物的显微结构,可以显著提高该负极材料的电化学性能。
[0004] 因此针对岩盐型高熵氧化物具有比较优异的循环稳定性这一特征,如何进一步提高该负极材料的电化学性能(改进制备方法除外),尤其是通过引入第二相或对高熵氧化物进行阴离子掺杂等手段还未见相关报道。

发明内容

[0005] (一)解决的技术问题
[0006] 针对岩盐型(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O高熵氧化物具有比较优异的循环稳定性这一特征,如何通过除制备方法以外的其他手段,进一步提高该负极材料的电化学性能这一问题,本发明通过在岩盐型高熵氧化物锂离子负极材料中固溶进一定量的金属硫化物,进一步提高该高熵氧化物锂离子负极材料的储锂性能。
[0007] (二)技术方案
[0008] 为实现上述目的,本发明提供如下方案予以实现:
[0009] 一 种含有 硫氧 双阴 离子的 岩盐 型高 熵负 极材 料 ,其化 学式 为(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O1‑xSx,其中x的值为0.02‑0.08。
[0010] 本发明还提供了一种含有硫氧双阴离子的岩盐型高熵负极材料的制备方法,具体包括以下步骤:
[0011] (1)按照分子式(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O1‑xSx,以其化学计量比称取等摩尔量的金属硝酸盐,溶于蒸馏水中,在室温下搅拌均匀,得到含有金属硝酸盐的混合溶液;
[0012] (2)称取硫代乙酰胺或硫化铵溶于氨水溶液中,在室温下搅拌均匀,得到碱性硫源溶液;
[0013] (3)将步骤(1)中含有金属硝酸盐的混合溶液加入到步骤(2)所得到的碱性硫源溶液中,在加热条件下进行磁力搅拌,离心分离后得到含有硫氧双阴离子的岩盐型高熵材料前驱体;
[0014] (4)将得到的含有硫氧双阴离子的岩盐型高熵材料前驱体进行高温煅烧,煅烧结束后,直接从反应温度下取出空冷,制得含有硫氧双阴离子的岩盐型高熵锂离子负极材料。
[0015] 优选的,步骤(1)中,所述金属硝酸盐包括Mg(NO3)2·6H2O、Co(NO3)2·6H2O、Cu(NO3)2·3H2O、Ni(NO3)2·6H2O和Zn(NO3)2·6H2O。
[0016] 优选的,步骤(1)中,所述含有金属硝酸盐的混合溶液的浓度为0.5‑1.5mol/L。
[0017] 优选的,步骤(2)中,所述硫源是硫代乙酰胺或硫化铵,且所述硫源与步骤(1)中总的金属阳离子的摩尔比为0.02‑0.08:1。
[0018] 优选的,步骤(2)中,所述碱性硫源溶液的pH在10‑12之间。
[0019] 优选的,步骤(3)中,所述加热温度为50‑90℃,搅拌时间为1.5‑3h。
[0020] 优选的,步骤(4)中,加热设备具有较快的升降温速度,且在空气气氛敞口条件下保温性能好。
[0021] 优选的,步骤(4)中,所述煅烧温度为850‑1000℃,煅烧时间为1‑5h。
[0022] 本发明的有益效果是:
[0023] 本发明通过在岩盐型(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O高熵氧化物中固溶进一定量的金属硫化物,制备了含有硫氧双阴离子的岩盐型高熵锂离子负极材料,进一步提高该高熵氧化物锂离子负极材料的储锂性能;在制备时,一方面采用液相配料,确保原料达到分子水平混匀,产物实现了化学计量比;另一方面可精准调控阴离子S的含量,进而调控(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O1‑xSx负极材料的电化学性能,满足其特殊使用要求。

实施方案

[0028] 下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
[0029] 实施例1
[0030] 一 种含有 硫氧 双阴 离子的 岩盐 型高 熵负 极材 料 ,其化 学式 为(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O0.96S0.04,称取等摩尔量的金属硝酸盐,具体为称取2.564g的Mg(NO3)2·6H2O、2.910g的Co(NO3)2·6H2O、2.416g的Cu(NO3)2·3H2O、2.908g的Ni(NO3)2·6H2O和2.975g的Zn(NO3)2·6H2O溶于20mL的蒸馏水中,在室温下搅拌均匀,得到含有金属硝酸盐的混合溶液;接着称取0.150g的硫代乙酰胺溶于pH为12的氨水溶液中,混合均匀得到碱性硫源溶液;然后将含有金属硝酸盐的混合溶液加入到碱性硫源溶液中,在60℃条件下磁力搅拌3h,离心分离洗涤后得到含有硫氧双阴离子的岩盐型高熵材料前驱体;最后将前驱体置于黄金炉中于900℃煅烧2h后,直接在900℃取出空冷,得到颗粒状,具有岩盐结构的(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O0.96S0.04高熵锂离子负极材料,该粉体材料的XRD图片和SEM图片如图1和图2所示。
[0031] 将上述制备的样品作为活性物质、SuperP炭黑为导电剂、聚偏二氟乙烯(PVDF)为黏结剂(质量比7:2:1),溶于N‑甲基吡咯烷酮后制成浆料均匀地涂覆在整洁的铜箔上制成电极片;然后以纯锂片为正极,聚丙烯多孔膜为隔膜,lmol/L LiPF6的DMC‑EC‑DEC(体积比1:1:1)的溶液为电解液,在手套箱中组装成CR2025型扣式电池。
[0032] 电 池的 充 放电 实 验 在新 威电 池 测 试 系统 上 进行 ,结果 如 下 :2
(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O0.96S0.04电极在200mA/cm的电流密度下进行充放电循环测试,在电压范围0.01V‑3.0V内,循环500次比容量为653mAh/g;而相同条件下制备的岩盐型(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O电极循环500次后的比容量为461mAh/g。
(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O0.96S0.04和(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O电极在电流密度为200mA/g时的循环性能和库伦效率如图3所示。
[0033] 实施例2
[0034] 一 种含有 硫氧 双阴 离子的 岩盐 型高 熵负 极材 料 ,其化 学式 为(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O0.92S0.08,称取等摩尔量的金属硝酸盐,具体为称取2.564g的Mg(NO3)2·6H2O、2.910g的Co(NO3)2·6H2O、2.416g的Cu(NO3)2·3H2O、2.908g的Ni(NO3)2·6H2O和2.975g的Zn(NO3)2·6H2O溶于20mL的蒸馏水中,在室温下搅拌均匀,得到含有金属硝酸盐的混合溶液;接着称取0.273g的硫代乙酰胺溶于pH为10的氨水溶液中,混合均匀得到碱性硫源溶液;然后将含有金属硝酸盐的混合溶液加入到碱性硫源溶液中,在90℃条件下磁力搅拌2h,离心分离洗涤后得到含有硫氧双阴离子的岩盐型高熵材料前驱体;最后将前驱体置于黄金炉中于850℃煅烧5h后,直接在850℃取出空冷,得到颗粒状,具有岩盐结构的(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O0.92S0.08高熵锂离子负极材料。
[0035] 将制备的样品作为活性物质、SuperP炭黑为导电剂、聚偏二氟乙烯(PVDF)为黏结剂(质量比7:2:1),溶于N‑甲基吡咯烷酮后制成浆料均匀地涂覆在整洁的铜箔上制成电极片;然后以纯锂片为正极,聚丙烯多孔膜为隔膜,lmol/LLiPF6的DMC‑EC‑DEC(体积比1:1:1)的溶液为电解液,在手套箱中组装成CR2025型扣式电池。电池的充放电实验在新威电池测2
试系统上进行,结果如下:(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O0.92S0.08电极在200mA/cm的电流密度下进行充放电循环测试,在电压范围0.01V~3.0V内,循环500次比容量为612mAh/g。
[0036] 实施例3
[0037] 一 种含有 硫氧 双阴 离子的 岩盐 型高 熵负 极材 料 ,其化 学式 为(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O0.96S0.04,称取等摩尔量的金属硝酸盐,具体为称取2.564g的Mg(NO3)2·6H2O、2.910g的Co(NO3)2·6H2O、2.416g的Cu(NO3)2·3H2O、2.908g的Ni(NO3)2·6H2O和2.975g的Zn(NO3)2·6H2O溶于20mL的蒸馏水中,在室温下搅拌均匀,得到含有金属硝酸盐的混合溶液;接着称取0.075g的硫代乙酰胺溶于pH为11的氨水溶液中,混合均匀得到碱性硫源溶液;然后将含有金属硝酸盐的混合溶液加入到碱性硫源溶液中,在50℃条件下磁力搅拌1.5h,离心分离洗涤后得到含有硫氧双阴离子的岩盐型高熵材料前驱体;最后将前驱体置于黄金炉中于1000℃煅烧1h后,直接在1000℃取出空冷,得到颗粒状,具有岩盐结构的(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O0.96S0.04高熵锂离子负极材料。
[0038] 将制备的样品作为活性物质、SuperP炭黑为导电剂、聚偏二氟乙烯(PVDF)为黏结剂(质量比7:2:1),溶于N‑甲基吡咯烷酮后制成浆料均匀地涂覆在整洁的铜箔上制成电极片;然后以纯锂片为正极,聚丙烯多孔膜为隔膜,lmol/LLiPF6的DMC‑EC‑DEC(体积比1:1:1)的溶液为电解液,在手套箱中组装成CR2025型扣式电池。电池的充放电实验在新威电池测2
试系统上进行,结果如下:(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O0.96S0.04电极在200mA/cm的电流密度下进行充放电循环测试,在电压范围0.01V~3.0V内,循环500次比容量为581mAh/g。
[0039] 在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
[0040] 以上公开的本发明优选实施例只是用于帮助阐述本发明。优选实施例并没有详尽叙述所有的细节。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。

附图说明

[0024] 为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
[0025] 图1为本发明实施例1中(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O0.96S0.04高熵粉体的SEM图片;
[0026] 图2为本发明实施例1中(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O0.96S0.04高熵粉体的XRD图片;
[0027] 图3为本发明实施例1中(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O0.96S0.04高熵粉体电极在电流密度为200mA/g时的循环性能和库伦效率。
版权所有:盲专网 ©2023 zlpt.xyz  蜀ICP备2023003576号