首页 > 专利 > 海南医学院 > 一种双模板剂合成Fe3O4@SAPO-35复合材料的方法专利详情

一种双模板剂合成Fe3O4@SAPO-35复合材料的方法   0    0

有效专利 查看PDF
专利申请流程有哪些步骤?
专利申请流程图
申请
申请号:指国家知识产权局受理一件专利申请时给予该专利申请的一个标示号码。唯一性原则。
申请日:提出专利申请之日。
2019-11-15
申请公布
申请公布指发明专利申请经初步审查合格后,自申请日(或优先权日)起18个月期满时的公布或根据申请人的请求提前进行的公布。
申请公布号:专利申请过程中,在尚未取得专利授权之前,国家专利局《专利公报》公开专利时的编号。
申请公布日:申请公开的日期,即在专利公报上予以公开的日期。
2020-02-18
授权
授权指对发明专利申请经实质审查没有发现驳回理由,授予发明专利权;或对实用新型或外观设计专利申请经初步审查没有发现驳回理由,授予实用新型专利权或外观设计专利权。
2021-06-01
预估到期
发明专利权的期限为二十年,实用新型专利权期限为十年,外观设计专利权期限为十五年,均自申请日起计算。专利届满后法律终止保护。
2039-11-15
基本信息
有效性 有效专利 专利类型 发明专利
申请号 CN201911118919.X 申请日 2019-11-15
公开/公告号 CN110697730B 公开/公告日 2021-06-01
授权日 2021-06-01 预估到期日 2039-11-15
申请年 2019年 公开/公告年 2021年
缴费截止日
分类号 C01B39/54C01G49/08B01J20/02B01J20/18B01J29/85 主分类号 C01B39/54
是否联合申请 独立申请 文献类型号 B
独权数量 1 从权数量 6
权利要求数量 7 非专利引证数量 0
引用专利数量 0 被引证专利数量 0
非专利引证
引用专利 被引证专利
专利权维持 3 专利申请国编码 CN
专利事件 转让 事务标签 公开、实质审查、申请权转移、授权
申请人信息
申请人 第一申请人
专利权人 海南医学院 当前专利权人 海南医学院
发明人 林卿、陈静娴、赵亚洲、刘露、杨虎、苏凯敏、何云 第一发明人 林卿
地址 海南省海口市龙华区学院路3号 邮编 570100
申请人数量 1 发明人数量 7
申请人所在省 海南省 申请人所在市 海南省海口市
代理人信息
代理机构
专利代理机构是经省专利管理局审核,国家知识产权局批准设立,可以接受委托人的委托,在委托权限范围内以委托人的名义办理专利申请或其他专利事务的服务机构。
西安铭泽知识产权代理事务所 代理人
专利代理师是代理他人进行专利申请和办理其他专利事务,取得一定资格的人。
崔瑞迎
摘要
本发明涉及复合材料合成技术领域,具体公开了一种双模板剂合成Fe3O4@SAPO‑35复合材料的方法。本发明将Fe3O4纳米粒子作为核,在其外包覆Fe3O4@SAPO‑35复合材料,能够合成较为规整的核壳型Fe3O4@SAPO‑35复合材料。具体以N‑甲基二乙醇胺和六亚甲基亚胺混合物为模板剂,硅溶胶为硅源,拟薄水铝石为铝源,磷酸为磷源,在水热晶化条件下合成Fe3O4@SAPO‑35复合材料。
  • 摘要附图
    一种双模板剂合成Fe3O4@SAPO-35复合材料的方法
  • 说明书附图:图1
    一种双模板剂合成Fe3O4@SAPO-35复合材料的方法
  • 说明书附图:图2
    一种双模板剂合成Fe3O4@SAPO-35复合材料的方法
  • 说明书附图:图3
    一种双模板剂合成Fe3O4@SAPO-35复合材料的方法
  • 说明书附图:图4
    一种双模板剂合成Fe3O4@SAPO-35复合材料的方法
  • 说明书附图:图5
    一种双模板剂合成Fe3O4@SAPO-35复合材料的方法
  • 说明书附图:图6
    一种双模板剂合成Fe3O4@SAPO-35复合材料的方法
  • 说明书附图:图7
    一种双模板剂合成Fe3O4@SAPO-35复合材料的方法
  • 说明书附图:图8
    一种双模板剂合成Fe3O4@SAPO-35复合材料的方法
  • 说明书附图:图9
    一种双模板剂合成Fe3O4@SAPO-35复合材料的方法
  • 说明书附图:图10
    一种双模板剂合成Fe3O4@SAPO-35复合材料的方法
  • 说明书附图:图11
    一种双模板剂合成Fe3O4@SAPO-35复合材料的方法
  • 说明书附图:图12
    一种双模板剂合成Fe3O4@SAPO-35复合材料的方法
  • 说明书附图:图13
    一种双模板剂合成Fe3O4@SAPO-35复合材料的方法
  • 说明书附图:图14
    一种双模板剂合成Fe3O4@SAPO-35复合材料的方法
法律状态
序号 法律状态公告日 法律状态 法律状态信息
1 2021-06-01 授权
2 2021-05-04 专利申请权的转移 登记生效日: 2021.04.21 申请人由林卿变更为海南医学院 地址由571199 海南省海口市龙华区学院路3号变更为570100 海南省海口市龙华区学院路3号
3 2021-04-16 著录事项变更 发明人由林卿 赵亚洲 杨虎 苏凯敏 何云 变更为林卿 陈静娴 赵亚洲 刘露 杨虎 苏凯敏 何云 
4 2020-02-18 实质审查的生效 IPC(主分类): C01B 39/54 专利申请号: 201911118919.X 申请日: 2019.11.15
5 2020-01-17 公开
权利要求
权利要求书是申请文件最核心的部分,是申请人向国家申请保护他的发明创造及划定保护范围的文件。
1.一种双模板剂合成Fe3O4@SAPO‑35复合材料的方法,其特征在于,包括以下步骤:
S1、按照SiO2:Al2O3为0.7,P2O5:Al2O3为1.4,第一模板剂:Al2O3为3,第二模板剂:Al2O3为
1.2,H2O:Al2O3为40的摩尔比分别称取各物质,再按照H2O:Fe3O4的质量比为9.6‑24称取Fe3O4的质量;
其中SiO2是硅源、Al2O3是铝源、P2O5是磷源,H2O是去离子水,所述第一模板剂为N‑甲基二乙醇胺、第二模板剂为六亚甲基亚胺;
S2、将Fe3O4加入三氯甲烷溶液中超声分散形成悬浊液,调节悬浊液pH为8‑9,向其中加入一部分的第一模板剂,将其置于水浴锅中搅拌至蒸发掉三氯甲烷形成混合液A;
S3、将P2O5和去离子水加入到S2得到的混合溶液A中,混合并搅拌均匀形成混合液B;
S4、将Al2O3加入到S3搅拌后的混合溶液B并搅拌均匀形成凝胶B;
S5、将SiO2加入到S4搅拌后的凝胶B中,搅拌均匀形成凝胶C;
S6,将第二模板剂和余下的第一模板剂加入到S5得到的凝胶C中,搅拌均匀形成反应凝胶D;
S7,将S6得到的反应凝胶D放入高压反应釜中密封后,置于干燥箱加热晶化;
S8,晶化结束后,等反应釜冷却至室温,取出晶化产物,将晶化产物离心、洗涤至中性、干燥,然后置于马弗炉中煅烧,得到Fe3O4@SAPO‑35复合材料。

2.根据权利要求1所述的双模板剂合成Fe3O4@SAPO‑35复合材料的方法,其特征在于,S2中,超声分散时间为5‑15min。

3.根据权利要求1所述的双模板剂合成Fe3O4@SAPO‑35复合材料的方法,其特征在于,S2中,水浴锅水浴温度为60‑80℃。

4.根据权利要求1所述的双模板剂合成Fe3O4@SAPO‑35复合材料的方法,其特征在于,S7中,干燥箱的加热的温度为200‑210℃,晶化时间为24‑48h。

5.根据权利要求1所述的双模板剂合成Fe3O4@SAPO‑35复合材料的方法,其特征在于,S8中,干燥的条件为80‑100℃干燥8‑16h。

6.根据权利要求1所述的双模板剂合成Fe3O4@SAPO‑35复合材料的方法,其特征在于,S8中,马弗炉的升温速度为1‑5℃/min。

7.根据权利要求1所述的双模板剂合成Fe3O4@SAPO‑35复合材料的方法,其特征在于,S8中,煅烧的条件为600℃煅烧4‑6h。
说明书

技术领域

[0001] 本发明涉及复合材料合成技术领域,具体涉及一种双模板剂合成 Fe3O4@SAPO‑35复合材料的方法。

背景技术

[0002] 核壳型磁性纳米复合材料由两种或者两种以上的功能材料复合而成的,是一种非常实用的新型材料,在众多领域有着广泛的应用。纳米Fe3O4具有制备容易、毒性低、价格低、磁性能优异等特性,常被用来作为核壳型氧化铁修饰多孔吸附材料的内核。纳米Fe3O4具有超顺磁性,其包覆后的磁性纳米复合材料依然具有超顺磁性,如果外加一个强磁场,能够快速的将其从液体中分离出来,因此纳米Fe3O4及其复合材料在许多领域得到广泛应用。Fe3O4@SAPO‑35 复合材料拥有酸催化反应性能,可用作酸催化反应的催化剂,如甲醇制烯烃反应,主要应用于炼油和石油化工领域,另外,Fe3O4@SAPO‑35复合材料在甲烷、二氧化碳、氮气吸附分离方面也有一定的应用,且具有良好的再生性能。因此将Fe3O4纳米粒子作为核,在其外包覆Fe3O4@SAPO‑35复合材料,形成 Fe3O4@SAPO‑35核壳型磁性纳米复合材料,其可以将Fe3O4纳米粒子的磁性能与易于分离回收等特性和Fe3O4@SAPO‑35复合材料的吸附性能与催化性能等特性集于一体,具有较好的应用前景。

发明内容

[0003] 为了解决现有技术中存在的不足,本发明提供的一种采用N‑甲基二乙醇胺和六亚甲基亚胺混合物为模板剂,提供一种双模板剂合成Fe3O4@SAPO‑35复合材料的方法。
[0004] 本发明提供一种双模板剂合成Fe3O4@SAPO‑35复合材料的方法,包括以下步骤:
[0005] S1、按照SiO2:Al2O3为0.7,P2O5:Al2O3为1.4,第一模板剂:Al2O3为3,第二模板剂:Al2O3为1.2,H2O:Al2O3为40的摩尔比分别称取各物质,再按照H2O:Fe3O4的质量比为9.6‑24称取Fe3O4的质量;
[0006] 其中SiO2是硅源、Al2O3是铝源、P2O5是磷源,H2O是去离子水,所述第一模板剂为N‑甲基二乙醇胺、第二模板剂为六亚甲基亚胺;
[0007] S2、将Fe3O4加入三氯甲烷溶液中超声分散形成悬浊液,调节悬浊液pH 为8‑9,向其中加入一部分的第一模板剂,将其置于水浴锅中搅拌至蒸发掉三氯甲烷形成混合液A;
[0008] S3、将P2O5和去离子水加入到S2得到的混合溶液A中,混合并搅拌均匀形成混合液B;
[0009] S4、将Al2O3加入到S3搅拌后的混合溶液B并搅拌均匀形成凝胶B;
[0010] S5、将SiO2加入到S4搅拌后的凝胶B中,搅拌均匀形成凝胶C;
[0011] S6,将第二模板剂和余下的第一模板剂加入到S5得到的凝胶C中,搅拌均匀形成反应凝胶D;
[0012] S7,将S6得到的反应凝胶D放入高压反应釜中密封后,置于干燥箱加热晶化;
[0013] S8,晶化结束后,等反应釜冷却至室温,取出晶化产物,将晶化产物离心、洗涤至中性、干燥,然后置于马弗炉中煅烧,得到Fe3O4@SAPO‑35复合材料。
[0014] 优选的,上述一种双模板剂合成Fe3O4@SAPO‑35复合材料的方法,S2中,超声分散时间为5‑15min。
[0015] 优选的,上述一种双模板剂合成Fe3O4@SAPO‑35复合材料的方法,S2中,水浴锅水浴温度为60‑80℃。
[0016] 优选的,上述一种双模板剂合成Fe3O4@SAPO‑35复合材料的方法,S7中,干燥箱的加热的温度为200‑210℃,晶化时间为24‑48h。
[0017] 优选的,上述一种双模板剂合成Fe3O4@SAPO‑35复合材料的方法,S8中,干燥的条件为80‑100℃干燥8‑16h。
[0018] 优选的,上述一种双模板剂合成Fe3O4@SAPO‑35复合材料的方法,S8中,马弗炉的升温速度为1‑5℃/min。
[0019] 优选的,上述一种双模板剂合成Fe3O4@SAPO‑35复合材料的方法,S8中,煅烧的条件为600℃煅烧4‑6h。
[0020] 与现有技术相比,本发明的制备方法具有以下有益效果:
[0021] 本发明提供的一种双模板剂合成Fe3O4@SAPO‑35复合材料的方法,将 Fe3O4纳米粒子作为核,在其外包覆SAPO‑35,能够合成较为规整的核壳型 Fe3O4@SAPO‑35复合材料,既具有Fe3O4的磁性能与易于分离回收等特性,又具有SAPO‑35的吸附性能与催化性能,具有较好的应用前景。

实施方案

[0037] 下面对发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。下列实施例中未注明具体条件的试验方法,通常按照常规条件,或者按照各制造商所建议的条件。
[0038] 除非另有定义,下文中所用是的所有专业术语与本领域技术人员通常理解的含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围。除非另有特别说明,本发明以下各实施例中用到的各种原料、试剂、仪器和设备均可通过市场购买得到或者通过现有方法制备得到。
[0039] 需要说明的是,本发明以下实施例中所涉及的室温温度为20~25℃。
[0040] 本发明提供的一种双模板剂合成Fe3O4@SAPO‑35复合材料的方法,具体包括以下实施例。
[0041] 实施例1
[0042] 本实施例提供的一种双模板剂合成Fe3O4@SAPO‑35复合材料的方法,包括以下步骤:
[0043] S1,分别称取2.33g硅溶胶(SiO2)、12.0g去离子水(H2O)、2.43g拟薄水铝石(Al2O3)、5.38gP2O5、0.5g Fe3O4、10ml三氯甲烷、5.96g N‑甲基二乙醇胺、1.99g六亚甲基亚胺;
[0044] S2,将0.5g Fe3O4加入到三氯甲烷溶液中超声分散10min形成悬浊液,调节悬浊液pH为8.5,向其中加入S1中2.98g的N‑甲基二乙醇胺,将其放置于 65℃水浴锅中搅拌直至蒸发掉三氯甲烷形成混合液A;
[0045] S3,将5.38gP2O5和的去离子水加入到S2搅拌后的混合溶液A混合并搅拌均匀形成混合液B;
[0046] S4,将2.43g拟薄水铝石(Al2O3)加入到S3搅拌后的混合溶液B并搅拌 1h搅拌均匀后形成凝胶B;
[0047] S5,将2.33g硅溶胶(SiO2)加入到S4搅拌后的凝胶B中,搅拌0.5h搅拌均匀后形成凝胶C;
[0048] S6,将余下的2.98gN‑甲基二乙醇胺和1.99g六亚甲基亚胺加入到S5搅拌后的凝胶C中,搅拌0.5h搅拌均匀后形成反应凝胶D;
[0049] S7,将S6得到的反应凝胶D放入不锈钢高压反应釜中密封后,放入干燥箱,200℃晶化36h;
[0050] S8,晶化结束后,等反应釜冷却至室温,取出晶化产物,将晶化产物离心、洗涤至中性、放置恒温干燥箱内,在100℃下干燥12h,然后将样品置于一个三层坩埚里,每层坩埚之间用碳粉填充,防止Fe3O4被氧化,置于马弗炉中,设置马弗炉的升温速度为2℃/min,在600℃下煅烧6h,得到Fe3O4@SAPO‑35复合材料。
[0051] 实施例2
[0052] 本实施例提供的一种双模板剂合成Fe3O4@SAPO‑35复合材料的方法,具体步骤与实施例1相同,区别仅在于S2中Fe3O4的加入量为0.75g。
[0053] 实施例3
[0054] 本实施例提供的一种双模板剂合成Fe3O4@SAPO‑35复合材料的方法,具体步骤与实施例1相同,区别仅在于S2中Fe3O4的加入量为1.0g。
[0055] 实施例4
[0056] 本实施例提供的一种双模板剂合成Fe3O4@SAPO‑35复合材料的方法,具体步骤与实施例1相同,区别仅在于S7中晶化温度为210℃。
[0057] 实施例5
[0058] 本实施例提供的一种双模板剂合成Fe3O4@SAPO‑35复合材料的方法,具体步骤与实施例4相同,区别仅在于S2中Fe3O4的加入量为0.75g。
[0059] 实施例6
[0060] 本实施例提供的一种双模板剂合成Fe3O4@SAPO‑35复合材料的方法,具体步骤与实施例4相同,区别仅在于S2中Fe3O4的加入量为1.0g。
[0061] 表1为实施例1至实施例6所制备Fe3O4@SAPO‑35复合材料的BET结构参数:
[0062] 表1六个实施例所得样品的BET结构参数
[0063]
[0064] 实施例7
[0065] 本实施例提供的一种本发明提供一种双模板剂合成Fe3O4@SAPO‑35复合材料的方法,包括以下步骤:
[0066] S1,分别称取2.33g硅溶胶(SiO2)、12.0g去离子水(H2O)、2.43g拟薄水铝石(Al2O3)、5.38gP2O5、0.5g Fe3O4、10ml三氯甲烷、5.96g N‑甲基二乙醇胺、1.99g六亚甲基亚胺;
[0067] S2,将0.5g Fe3O4加入到三氯甲烷溶液中超声分散5min形成悬浊液,调节悬浊液pH为8,向其中加入S1中2.98g的N‑甲基二乙醇胺,将其放置于60℃水浴锅中搅拌直至蒸发掉三氯甲烷形成混合液A;
[0068] S3,将5.38gP2O5和的去离子水加入到S2搅拌后的混合溶液A混合并搅拌均匀形成混合液B;
[0069] S4,将2.43g拟薄水铝石(Al2O3)加入到S3搅拌后的混合溶液B并搅拌 1h搅拌均匀后形成凝胶B;
[0070] S5,将2.33g硅溶胶(SiO2)加入到S4搅拌后的凝胶B中,搅拌0.5h搅拌均匀后形成凝胶C;
[0071] S6,将余下的2.98gN‑甲基二乙醇胺和1.99g六亚甲基亚胺加入到S5搅拌后的凝胶C中,搅拌0.5h搅拌均匀后形成反应凝胶D;
[0072] S7,将S6得到的反应凝胶D放入不锈钢高压反应釜中密封后,放入干燥箱,200℃晶化24h;
[0073] S7,晶化结束后,等反应釜冷却至室温,取出晶化产物,将晶化产物离心、洗涤至中性、放置恒温干燥箱内,在80℃下干燥16h,然后将样品置于一个三层坩埚里,每层坩埚之间用碳粉填充,防止Fe3O4被氧化,置于马弗炉中,设置马弗炉的升温速度为1℃/min,在600℃下煅烧4h,得到Fe3O4@SAPO‑35复合材料。
[0074] 实施例8
[0075] 本实施例提供的一种本发明提供一种双模板剂合成Fe3O4@SAPO‑35复合材料的方法,包括以下步骤:
[0076] S1,分别称取2.33g硅溶胶(SiO2)、12.0g去离子水(H2O)、2.43g拟薄水铝石(Al2O3)、5.38gP2O5、0.5g Fe3O4、10ml三氯甲烷、5.96g N‑甲基二乙醇胺、1.99g六亚甲基亚胺;
[0077] S2,将0.5g Fe3O4加入到三氯甲烷溶液中超声分散5min形成悬浊液,调节悬浊液pH为9,向其中加入S1中2.98g的N‑甲基二乙醇胺,将其放置于80℃水浴锅中搅拌直至蒸发掉三氯甲烷形成混合液A;
[0078] S3,将5.38gP2O5和的去离子水加入到S2搅拌后的混合溶液A混合并搅拌均匀形成混合液B;
[0079] S4,将2.43g拟薄水铝石(Al2O3)加入到S3搅拌后的混合溶液B并搅拌 1h搅拌均匀后形成凝胶B;
[0080] S5,将2.33g硅溶胶(SiO2)加入到S4搅拌后的凝胶B中,搅拌0.5h搅拌均匀后形成凝胶C;
[0081] S6,将余下的2.98gN‑甲基二乙醇胺和1.99g六亚甲基亚胺加入到S5搅拌后的凝胶C中,搅拌0.5h搅拌均匀后形成反应凝胶D;
[0082] S7,将S6得到的反应凝胶D放入不锈钢高压反应釜中密封后,放入干燥箱,200℃晶化48h;
[0083] S7,晶化结束后,等反应釜冷却至室温,取出晶化产物,将晶化产物离心、洗涤至中性、放置恒温干燥箱内,在80℃下干燥16h,然后将样品置于一个三层坩埚里,每层坩埚之间用碳粉填充,防止Fe3O4被氧化,置于马弗炉中,设置马弗炉的升温速度为5℃/min,在600℃下煅烧6h,得到Fe3O4@SAPO‑35复合材料。
[0084] 一、对实施例1所制备的Fe3O4@SAPO‑35复合材料进行表征分析
[0085] 图1是实施例1所制备Fe3O4@SAPO‑35复合材料的XRD图谱,具体地,图1为Fe3O4加入量为0.5g,晶化温度为200℃,晶化时间为36h所得样品XRD 图。由图1可知当Fe3O4加入量为0.5g,晶化温度为200℃时的XRD图在8.6°、 10.9°、17.3°、21.9°、32.2°等位置出现SAPO‑35分子筛的特征衍射峰与张凤美等在专利报道的SAPO‑35复合材料XRD图基本一致,在36°左右会出现 Fe3O4的特征峰,说明该条件下制备的样品为Fe3O4@SAPO‑35复合材料。并且随着Fe3O4的加入量的增加,Fe3O4的特征峰会逐渐增强,由于大多数的Fe3O4会与磷酸发生反应,导致Fe3O4特征峰不明显。
[0086] 图2是实施例1所制备Fe3O4@SAPO‑35复合材料的氮气吸附脱附等温线及孔径分布图,具体为Fe3O4加入量为0.5g,晶化温度为200℃,晶化时间为 36h所得样品氮气吸附脱附等温线及孔体积孔径分布图,通过氮吸附和孔径结构的表征再结合XRD分析通常足以衡量‑6一个分子筛样品的质量。从图中可看出,所有样品均具有IV型等温线,在10

[0087] 另外由样品的孔径分布图可知所生成的Fe3O4@SAPO‑35复合材料最可几孔径大致分布在0.7~0.8nm之间。
[0088] 二、对实施例2所制备的Fe3O4@SAPO‑35复合材料进行表征分析
[0089] 图3为实施例2所制备Fe3O4@SAPO‑35复合材料的XRD图谱,具体地,图4为Fe3O4加入量为0.75g,晶化温度为200℃,晶化时间为36h所得样品XRD 图。由图可知当Fe3O4加入量为0.5g,晶化温度为200℃时的XRD图在8.6°、10.9°、17.3°、21.9°、32.2°等位置出现SAPO‑35分子筛的特征衍射峰与张凤美等在专利报道的SAPO‑35复合材料XRD图基本一致,在36°左右会出现 Fe3O4的特征峰,说明该条件下制备的样品为Fe3O4@SAPO‑35复合材料。并且随着Fe3O4的加入量的增加,Fe3O4的特征峰会逐渐增强,由于大多数的Fe3O4会与磷酸发生反应,导致Fe3O4特征峰不明显。
[0090] 图4为Fe3O4加入量为0.75g,晶化温度为200℃,晶化时间为36h所得样品氮气吸附脱附等温线及孔体积孔径分布图,通过氮吸附和孔径结构的表征再结合XRD分析通常足以‑6衡量一个分子筛样品的质量。从图中可看出,所有样品均具有IV型等温线,在10

0.01之间,N2吸附量迅速增加,这是N2被微孔吸附造成的突增,说明样品有微孔存在。同时,样品等温线存在滞后环,说明样品中存在介孔,样品中介孔结构的产生应该归因于焙烧期间水蒸气和碳氧化物的演变引起结构和纹理的变化。另外由样品的孔径分布图可知所生成的 Fe3O4@SAPO‑35复合材料最可几孔径大致分布在0.7‑0.8nm之间。

[0091] 三、对实施例3所制备的Fe3O4@SAPO‑35复合材料进行表征分析
[0092] 图5为实施例3所制备Fe3O4@SAPO‑35复合材料的XRD图谱,具体地,图5为Fe3O4加入量为1.0g,晶化温度为200℃,晶化时间为36h所得样品XRD 图。由图可知当Fe3O4加入量为0.5g,晶化温度为200℃时的XRD图在8.6°、 10.9°、17.3°、21.9°、32.2°等位置出现SAPO‑35分子筛的特征衍射峰与张凤美等在专利报道的SAPO‑35复合材料XRD图基本一致,在36°左右会出现 Fe3O4的特征峰,说明该条件下制备的样品为Fe3O4@SAPO‑35复合材料。并且随着Fe3O4的加入量的增加,Fe3O4的特征峰会逐渐增强,由于大多数的Fe3O4会与磷酸发生反应,导致Fe3O4特征峰不明显。
[0093] 图6为Fe3O4加入量为1.0g,晶化温度为200℃,晶化时间为36h所得样品氮气吸附脱附等温线及孔体积孔径分布图,通过氮吸附和孔径结构的表征再结合XRD分析通常足以衡‑6量一个分子筛样品的质量。从图中可看出,所有样品均具有IV型等温线,在10

[0094] 另外由样品的孔径分布图可知所生成的Fe3O4@SAPO‑35复合材料最可几孔径大致分布在0.7nm左右。
[0095] 四、对实施例4所制备的Fe3O4@SAPO‑35复合材料进行表征分析
[0096] 图7为实施例4所制备Fe3O4@SAPO‑35复合材料的XRD图谱,具体地,图7为Fe3O4加入量为0.5g,晶化温度为210℃,晶化时间为36h所得样品XRD 图。由图可知当Fe3O4加入量为0.5g,晶化温度为200℃时的XRD图在8.6°、 10.9°、17.3°、21.9°、32.2°等位置出现SAPO‑35分子筛的特征衍射峰与张凤美等在专利报道的SAPO‑35复合材料XRD图基本一致,在36°左右会出现 Fe3O4的特征峰,说明该条件下制备的样品为Fe3O4@SAPO‑35复合材料。并且随着Fe3O4的加入量的增加,Fe3O4的特征峰会逐渐增强,由于大多数的Fe3O4会与磷酸发生反应,导致Fe3O4特征峰不明显。
[0097] 图8为Fe3O4加入量为0.5g,晶化温度为210℃,晶化时间为36h所得样品氮气吸附脱附等温线及孔体积孔径分布图,通过氮吸附和孔径结构的表征再结合XRD分析通常足以衡‑6量一个分子筛样品的质量。从图中可看出,所有样品均具有IV型等温线,在10

[0098] 另外由样品的孔径分布图可知所生成的Fe3O4@SAPO‑35复合材料最可几孔径大致分布在0.7nm左右。
[0099] 五、对实施例5所制备的Fe3O4@SAPO‑35复合材料进行表征分析
[0100] 图9为实施例5所制备Fe3O4@SAPO‑35复合材料的XRD图谱,具体地,图9为Fe3O4加入量为0.75g,晶化温度为210℃,晶化时间为36h所得样品XRD 图。由图可知当Fe3O4加入量为0.5g,晶化温度为200℃时的XRD图在8.6°、 10.9°、17.3°、21.9°、32.2°等位置出现SAPO‑35分子筛的特征衍射峰与张凤美等在专利报道的SAPO‑35复合材料XRD图基本一致,在36°左右会出现 Fe3O4的特征峰,说明该条件下制备的样品为Fe3O4@SAPO‑35复合材料。并且随着Fe3O4的加入量的增加,Fe3O4的特征峰会逐渐增强,由于大多数的Fe3O4会与磷酸发生反应,导致Fe3O4特征峰不明显。
[0101] 图10为Fe3O4加入量为0.75g,晶化温度为210℃,晶化时间为36h所得样品氮气吸附脱附等温线及孔体积孔径分布图,通过氮吸附和孔径结构的表征再结合XRD分析通常足以‑6衡量一个分子筛样品的质量。从图中可看出,所有样品均具有IV型等温线,在10

0.01之间,N2吸附量迅速增加,这是 N2被微孔吸附造成的突增,说明样品有微孔存在。同时,样品等温线存在滞后环,说明样品中存在介孔,样品中介孔结构的产生应该归因于焙烧期间水蒸气和碳氧化物的演变引起结构和纹理的变化。

[0102] 另外由样品的孔径分布图可知所生成的Fe3O4@SAPO‑35复合材料最可几孔径大致分布在0.7nm左右。
[0103] 六、对实施例6所制备的Fe3O4@SAPO‑35复合材料进行表征分析
[0104] 图11为实施例5所制备Fe3O4@SAPO‑35复合材料的XRD图谱,具体地,图11为Fe3O4加入量为1.0g,晶化温度为210℃,晶化时间为36h所得样品XRD 图。由图可知当Fe3O4加入量为0.5g,晶化温度为200℃时的XRD图在8.6°、 10.9°、17.3°、21.9°、32.2°等位置出现SAPO‑35分子筛的特征衍射峰与张凤美等在专利报道的SAPO‑35复合材料XRD图基本一致,在36°左右会出现 Fe3O4的特征峰,说明该条件下制备的样品为Fe3O4@SAPO‑35复合材料。并且随着Fe3O4的加入量的增加,Fe3O4的特征峰会逐渐增强,由于大多数的Fe3O4会与磷酸发生反应,导致Fe3O4特征峰不明显。
[0105] 图12为Fe3O4加入量为1.0g,晶化温度为210℃,晶化时间为36h所得样品氮气吸附脱附等温线及孔体积孔径分布图,通过氮吸附和孔径结构的表征再结合XRD分析通常足以‑6衡量一个分子筛样品的质量。从图中可看出,所有样品均具有IV型等温线,在10

0.01之间,N2吸附量迅速增加,这是N2被微孔吸附造成的突增,说明样品有微孔存在。同时,样品等温线存在滞后环,说明样品中存在介孔,样品中介孔结构的产生应该归因于焙烧期间水蒸气和碳氧化物的演变引起结构和纹理的变化。

[0106] 另外由样品的孔径分布图可知所生成的Fe3O4@SAPO‑35复合材料最可几孔径大致分布在0.7nm左右。
[0107] 六、Fe3O4@SAPO‑35复合材料进行VSM表征分析
[0108] 图13为200℃、210℃晶化36h所得样品的VSM图,图中沿着纵坐标方向从下至上依次为Fe3O4加入量为0.5g、0.75g和0.1g的VSM图。从图中可看出,由图可知,Fe3O4@SAPO‑35复合材料具有一定的磁性能,随着外加磁场强度的增大,磁化强度增大,但两者并非线性关系,磁场强度继续增大,磁化强度达到饱和。随着Fe3O4加入量的增大,样品的饱和磁化强度逐渐增大,在Fe3O4加入量为1.0g时,饱和磁化强度达到最大。由于反应物料中的磷酸会与Fe3O4发生化学反应,导致复合材料的饱和磁化强度比较弱。
[0109] 七、Fe3O4@SAPO‑35复合材料进行FT‑IR表征分析
[0110] 图14为Fe3O4@SAPO‑35的红外光谱图,478cm‑1是Si‑O弯曲振动峰, 645cm‑1为双六‑1 ‑1 ‑元环振动峰,750cm 是O‑P‑O或O‑AL‑O的对称振动峰, 1639cm 是–OH弯曲振动峰,3450cm
1 ‑1
Si‑OH伸缩振动峰,样品除了具有上述SAPO‑35分子筛的振动峰之外,在593cm 处对应的峰为Fe3O4中Fe‑O键的振动吸收峰,说明样品中有Fe3O4存在。
[0111] 需要说明的是,本发明权利要求书中涉及数值范围时,应理解为每个数值范围的两个端点以及两个端点之间任何一个数值均可选用,由于采用的步骤方法与实施例相同,为了防止赘述,本发明描述了优选实施例及其效果,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
[0112] 显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

附图说明

[0022] 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
[0023] 图1为实施例1所制备Fe3O4@SAPO‑35复合材料的XRD图谱;
[0024] 图2为实施例1所制备Fe3O4@SAPO‑35复合材料的氮气吸附脱附等温线图 (a)及孔径分布图(b);
[0025] 图3为实施例2所制备Fe3O4@SAPO‑35复合材料的XRD图谱;
[0026] 图4为实施例2所得样品氮气吸附脱附等温线图(a)及孔径分布图(b);
[0027] 图5为实施例3所制备Fe3O4@SAPO‑35复合材料的XRD图谱;
[0028] 图6为实施例3所制备Fe3O4@SAPO‑35复合材料的氮气吸附脱附等温线图 (a及孔径分布图(b);
[0029] 图7为实施例4所制备Fe3O4@SAPO‑35复合材料的XRD图谱;
[0030] 图8为实施例4所制备Fe3O4@SAPO‑35复合材料的氮气吸附脱附等温线图 (a)及孔径分布图(b);
[0031] 图9为实施例5所制备Fe3O4@SAPO‑35复合材料的XRD图谱;
[0032] 图10为实施例5所制备Fe3O4@SAPO‑35复合材料的氮气吸附脱附等温线图(a)及孔径分布图(b);
[0033] 图11为实施例6所制备Fe3O4@SAPO‑35复合材料的XRD图谱;
[0034] 图12为实施例6所制备Fe3O4@SAPO‑35复合材料的氮气吸附脱附等温线图(a)及孔径分布图(b);
[0035] 图13为实施例1‑6所制备的Fe3O4@SAPO‑35复合材料的VSM图,其中图 (a)分别为实施例1‑3所制备的Fe3O4@SAPO‑35复合材料的VSM图,图(b) 为实施例4‑6所制备的Fe3O4@SAPO‑35复合材料的VSM图;
[0036] 图14为实施例1制备的Fe3O4@SAPO‑35的红外光谱图。
版权所有:盲专网 ©2023 zlpt.xyz  蜀ICP备2023003576号