首页 > 专利 > 江苏大学 > 一种五自由度无轴承同步磁阻电机解耦控制器及构造方法专利详情

一种五自由度无轴承同步磁阻电机解耦控制器及构造方法   0    0

有效专利 查看PDF
专利申请流程有哪些步骤?
专利申请流程图
申请
申请号:指国家知识产权局受理一件专利申请时给予该专利申请的一个标示号码。唯一性原则。
申请日:提出专利申请之日。
2011-04-12
申请公布
申请公布指发明专利申请经初步审查合格后,自申请日(或优先权日)起18个月期满时的公布或根据申请人的请求提前进行的公布。
申请公布号:专利申请过程中,在尚未取得专利授权之前,国家专利局《专利公报》公开专利时的编号。
申请公布日:申请公开的日期,即在专利公报上予以公开的日期。
2011-09-07
授权
授权指对发明专利申请经实质审查没有发现驳回理由,授予发明专利权;或对实用新型或外观设计专利申请经初步审查没有发现驳回理由,授予实用新型专利权或外观设计专利权。
2014-02-12
预估到期
发明专利权的期限为二十年,实用新型专利权期限为十年,外观设计专利权期限为十五年,均自申请日起计算。专利届满后法律终止保护。
2031-04-12
基本信息
有效性 有效专利 专利类型 发明专利
申请号 CN201110090621.X 申请日 2011-04-12
公开/公告号 CN102136822B 公开/公告日 2014-02-12
授权日 2014-02-12 预估到期日 2031-04-12
申请年 2011年 公开/公告年 2014年
缴费截止日
分类号 H02P21/00H02P21/14 主分类号 H02P21/00
是否联合申请 独立申请 文献类型号 B
独权数量 1 从权数量 1
权利要求数量 2 非专利引证数量 0
引用专利数量 0 被引证专利数量 0
非专利引证
引用专利 被引证专利
专利权维持 10 专利申请国编码 CN
专利事件 转让 事务标签 公开、实质审查、授权、权利转移
申请人信息
申请人 第一申请人
专利权人 江苏大学 当前专利权人 江阴智产汇知识产权运营有限公司
发明人 朱熀秋、刁小燕、阮颖、张婷婷、李衍超、李天博、张涛、孙晓东 第一发明人 朱熀秋
地址 江苏省镇江市京口区学府路301号 邮编 212013
申请人数量 1 发明人数量 8
申请人所在省 江苏省 申请人所在市 江苏省镇江市
代理人信息
代理机构
专利代理机构是经省专利管理局审核,国家知识产权局批准设立,可以接受委托人的委托,在委托权限范围内以委托人的名义办理专利申请或其他专利事务的服务机构。
南京经纬专利商标代理有限公司 代理人
专利代理师是代理他人进行专利申请和办理其他专利事务,取得一定资格的人。
楼高潮
摘要
本发明公开一种五自由度无轴承同步磁阻电机解耦控制器及构造方法,将三个扩展的电流滞环PWM逆变器、开关功率放大器及五自由度无轴承同步磁阻电机组成复合被控对象;用5个支持向量机2阶系统、1个支持向量机1阶系统以及11个积分器构造支持向量机α阶逆系统并离线训练,将支持向量机α阶逆系统置于复合被控对象之前共同组成伪线性系统,伪线性系统等效为5个位置二阶积分子系统和1个位置一阶积分子系统;分别针对这6个积分子系统设计5个位置控制器和一个转速控制器后构成线性闭环控制器;本发明采用最小二乘支持向量机逼近非线性系统的a阶逆模型,实现各个被控量之间的动态解耦控制,有效提高整个系统的控制性能。
  • 摘要附图
    一种五自由度无轴承同步磁阻电机解耦控制器及构造方法
  • 说明书附图:图1
    一种五自由度无轴承同步磁阻电机解耦控制器及构造方法
  • 说明书附图:图2
    一种五自由度无轴承同步磁阻电机解耦控制器及构造方法
  • 说明书附图:图3
    一种五自由度无轴承同步磁阻电机解耦控制器及构造方法
  • 说明书附图:图4
    一种五自由度无轴承同步磁阻电机解耦控制器及构造方法
  • 说明书附图:图5
    一种五自由度无轴承同步磁阻电机解耦控制器及构造方法
  • 说明书附图:图6
    一种五自由度无轴承同步磁阻电机解耦控制器及构造方法
  • 说明书附图:图7
    一种五自由度无轴承同步磁阻电机解耦控制器及构造方法
法律状态
序号 法律状态公告日 法律状态 法律状态信息
1 2021-05-11 专利权的转移 登记生效日: 2021.04.28 专利权人由江苏大学变更为江阴智产汇知识产权运营有限公司 地址由212013 江苏省镇江市京口区学府路301号变更为214400 江苏省无锡市江阴市澄江中路159号D501-3
2 2014-02-12 授权
3 2011-09-07 实质审查的生效 IPC(主分类): H02P 21/00 专利申请号: 201110090621.X 申请日: 2011.04.12
4 2011-07-27 公开
权利要求
权利要求书是申请文件最核心的部分,是申请人向国家申请保护他的发明创造及划定保护范围的文件。
1.一种五自由度无轴承同步磁阻电机解耦控制器的构造方法,采用五自由度无轴承同步磁阻电机解耦控制器,所述五自由度无轴承同步磁阻电机(1)包括三自由度主动磁轴承a、二自由度无轴承同步磁阻电机b和转子e,所述五自由度无轴承同步磁阻电机解耦控制器由伪线性系统(9)及串接之前的线性闭环控制器(7)组成,所述伪线性系统(9)由复合被控对象(8)及串接之前的支持向量机α阶逆系统(6)组成,所述复合被控对象(8)由三个扩展的电流滞环PWM逆变器(2、3、4)及开关功率放大器(5)与五自由度无轴承同步磁阻电机(1)共同组成,第一扩展的电流滞环PWM逆变器(2)和开关功率放大器(5)分别串接三自由度主动磁轴承a之前,第二、第三扩展的电流滞环PWM逆变器(3、4)分别串接二自由度无轴承同步磁阻电机b之前;所述支持向量机α阶逆系统(6)由5个支持向量机2阶系统(61、62、63、64、65)和一个支持向量机1阶系统(66)加11个积分器组成,所述线性闭环控制器(7)由五个转子位置控制器(71、72、73、74、75)及一个转速控制器(76)组成,其特征是采用如下步骤:
1)将三个扩展的电流滞环PWM逆变器(2、3、4)、开关功率放大器(5)及五自由度无轴承同步磁阻电机(1)组成复合被控对象(8);
2)先用5个支持向量机2阶系统(61、62、63、64、65)、1个支持向量机1阶系统(66)-1
以及11个积分器s 构造支持向量机α阶逆系统(6),第一扩展的电流滞环PWM逆变器(2)以支持向量机α阶逆系统(6)输出的三自由度主动磁轴承a的控制电流分量参考值 和 为其输入,开关功率放大器(5)以支持向量机α阶逆系统(6)输出的三自由度主动磁轴承a的控制电流分量参考值 为其输入,第二扩展的电流滞环PWM逆变器(3)以支持向量机α阶逆系统(6)输出的二自由度无轴承同步磁阻电机b的径向位移控制电流分量参考值 和 为其输入,第三扩展的电流滞环PWM逆变器(4)以支持向量机α阶逆系统(6)输出的二自由度无轴承同步磁阻电机b的转速控制电流分量参考值 和选定的常数 为其输入;再离线训练支持向量机α阶逆系统(6);
3)将支持向量机α阶逆系统(6)置于复合被控对象(8)之前共同组成伪线性系统(9),伪线性系统(9)等效为5个位置二阶积分子系统和1个位置一阶积分子系统;
4)分别针对6个所述积分子系统设计5个位置控制器(71、72、73、74、75)和一个转速控制器(76)后构成线性闭环控制器(7);
5)将线性闭环控制器(7)、支持向量机α阶逆系统(6)、复合被控对象(8)共同构成五自由度无轴承同步磁阻电机解耦控制器(10)。

2.根据权利要求1所述的构造方法,其特征是:步骤2)所述支持向量机α阶逆系统(6)的训练方法为:先在实际工作区域内将6个所述电流分量参考值 、 、 、 、和 随机方波信号作为阶跃激励信号分别施加于复合被控对象(8)的输入端,并对其输入的信号 及输出响应
采样,xa、ya是三自由度主动磁轴承a
控制的转子径向位移,za是三自由度主动磁轴承a控制的转子轴向位移,xb、yb是二自由度无轴承同步磁阻电机b控制的转子径向位移,ω 是二自由度无轴承同步磁阻电机b控制的转子转速,得到原始数据样本{u1,u2,u3,u4,u5,u6,y1,y2,y3,y4,y5,y6};再采用高阶数值微分方法离线计算y的各阶导数{ , , , , , , , , , , , };
得到300组支持向量机α阶逆系统(6)的训练样本集{ , , , , , ,
, , , , , , , , , , , ,u1,u2,u3,u4,u5,u6};然后采用最小
二乘法分别对复合被控对象(8)的6个输出量所对应的每个支持向量机2阶系统(61、62、
63、64、65)及支持向量机1阶系统(66)进行离线学习,获得相应的输入向量系数 和阈值;其中上标j是复合被控对象(8)第j个输出对应的变量,下标i是第i对训练样本;最后,分别根据各个支持向量机2阶系统(61、62、63、64、65)及支持向量机1阶系统(66)的当前输入 辨识出α阶逆模型的输出为 ,式中 为高
斯核函数。
说明书

技术领域

[0001] 本发明是一种五自由度无轴承同步磁阻电机解耦控制器及其构造方法,适用于高速及超高速电气传动领域。无轴承同步磁阻电机在机床主轴、涡轮分子泵、离心机、压缩机、机电贮能、航空航天等特殊电气传动领域具有广泛的应用前景, 属于电气传动控制设备的技术领域。

背景技术

[0002] 与传统无轴承电机相比,同步磁阻电机具有诸多优势:转子上省略了永磁体,也无励磁绕组,结构简单,运行可靠,成本低,还因其可以实现很高的凸极比,从而同时具有高转矩密度、快速动态响应、低转矩脉动、低损耗、高功率因数等优点,更加适合高速及高精度应用领域。将无轴承技术及磁轴承技术应用于同步磁阻电机,即利用磁场力将转子悬浮于空中,使转子和定子之间无任何机械接触,使无轴承同步磁阻电机不仅具有同步磁阻电机的优点,又具有无润滑、寿命长、无摩擦、无机械噪声等优势,满足了众多场合需要高速或超高速电气传动的要求,在高速电气传动等特殊应用场所有着独特优势。
[0003] 五自由度无轴承同步磁阻电机是一个非线性、强耦合的多输入多输出系统,对其进行动态解耦控制是实现无轴承同步磁阻电机稳定可靠工作的关键。如果采用分散控制方法对系统进行控制,则忽略了系统各个变量之间的耦合作用,无法满足高速高精度运转的要求,必须对系统进行解耦,分别独立控制磁轴承的径向悬浮力、轴向悬浮力、电机的径向悬浮力以及电磁转矩。
[0004] 常用的解耦控制方法中,矢量控制只能实现转矩和悬浮力的静态解耦控制,其动态响应性能还不能令人满意;微分几何方法虽然可以实现系统的动态解耦,但是需要将问题变换到几何域中来讨论,并且使用的数学工具相当复杂、抽象;逆系统方法可以实现系统的动态解耦,但是需要知道被控对象的精确数学模型,难以应用于工程实践中;神经网络逆解耦控制能够在解析逆难以求得的情况下实现系统的动态解耦,但神经网络在理论和设计方法上还存在学习速度慢、训练时间长,理想的样本提取困难,网络结构不易优化等难以克服的缺陷。
[0005] 专利申请号为201010117622.4、名称为:无轴承同步磁阻电机支持向量机逆系统复合控制器,采用支持向量机逆系统复合控制器对二自由度无轴承同步磁阻电机进行解耦控制,其针对的控制对象是二自由度无轴承同步磁阻电机,但对由二自由度无轴承同步磁阻电机和三自由度主动磁轴承构成的结构更为复杂的五自由度无轴承同步磁阻电机却无法进行解耦控制,五自由度无轴承同步磁阻电机不仅电机的结构更为复杂,而且由于在建立系统运动方程时,将转子看作刚体并且考虑系统的各自由度之间的耦合问题和系统的陀螺效应,使得其数学模型、控制方法、解耦难度与二自由度无轴承同步磁阻电机存在本质区别。

发明内容

[0006] 本发明的目的是为克服上述现有技术的缺陷而提供一种基于最小二乘支持向量机的五自由度无轴承同步磁阻电机解耦控制器,既可实现磁轴承的径向悬浮力、轴向悬浮力、电机径向悬浮力和电磁转矩之间的解耦控制,又可获得良好的各项控制性能指标,如转子径向位置动、静态调节特性及转矩、速度调节性能。
[0007] 本发明同时还提供该五自由度无轴承同步磁阻电机解耦控制器的构造方法,针对五自由度无轴承同步磁阻电机这个非线性、强耦合复杂系统,采用最小二乘支持向量机构造复合控制对象的逆系统模型,实现对磁轴承的径向悬浮力、轴向悬浮力、电机径向悬浮力和电磁转矩这6个变量的独立控制。
[0008] 本发明五自由度无轴承同步磁阻电机解耦控制器采用的技术方案是:五自由度无轴承同步磁阻电机包括三自由度主动磁轴承a、二自由度无轴承同步磁阻电机b和转子e,五自由度无轴承同步磁阻电机解耦控制器由伪线性系统及串接之前的线性闭环控制器组成,伪线性系统由复合被控对象及串接之前的支持向量机α阶逆系统组成,复合被控对象由三个扩展的电流滞环PWM逆变器及开关功率放大器与五自由度无轴承同步磁阻电机共同组成,第一扩展的电流滞环PWM逆变器和开关功率放大器分别串接三自由度主动磁轴承a之前,第二、第三扩展的电流滞环PWM逆变器分别串接二自由度无轴承同步磁阻电机b之前;支持向量机α阶逆系统由5个支持向量机2阶系统和一个支持向量机1阶系统加11个积分器组成,线性闭环控制器由五个转子位置控制器及一个转速控制器组成。
[0009] 本发明五自由度无轴承同步磁阻电机解耦控制器的构造方法的技术方案是采用如下步骤:1)将三个扩展的电流滞环PWM逆变器、开关功率放大器及五自由度无轴承同步磁阻电机组成复合被控对象;2)先用5个支持向量机2阶系统、1个支持向量-1机1阶系统以及11个积分器s 构造支持向量机α阶逆系统,第一扩展的电流跟踪逆变器以支持向量机α阶逆系统输出的三自由度主动磁轴承a的控制电流分量参考值 和 为其输入,开关功率放大器以支持向量机α阶逆系统输出的三自由度主动磁轴承a的控制电流分量参考值 为其输入,第二扩展的电流跟踪逆变器以支持向量机α阶逆系统输出的二自由度无轴承同步磁阻电机b的径向位移控制电流分量参考值 和 为其输入,第三扩展的电流跟踪逆变器以支持向量机α阶逆系统输出的二自由度无轴承同步磁阻电机b的转速控制电流分量参考值 和选定的常数 为其输入;再离线训练支持向量机α阶逆系统;3)将支持向量机α阶逆系统置于复合被控对象之前共同组成伪线性系统,伪线性系统等效为5个位置二阶积分子系统和1个位置一阶积分子系统;4)分别针对6个所述积分子系统设计5个位置控制器和一个转速控制器后构成线性闭环控制器;5)将线性闭环控制器、支持向量机α阶逆系统、复合被控对象共同构成五自由度无轴承同步磁阻电机解耦控制器。
[0010] 本发明的有益效果在于:
[0011] 1.本发明针对五自由度无轴承同步磁阻电机这一非线性、强耦合的多输入多输出系统,采用最小二乘支持向量机逼近非线性系统的的a阶逆模型,构造复合被控对象的a阶逆模型,不需要知道被控系统的精确数学模型,克服了逆系统方法难以求得解析逆的难题。通过将系统线性化和解耦成为6个互相独立的线性积分子系统来实现各个被控量之间的动态解耦控制,将复杂的非线性耦合控制问题变为简单的线性控制问题,进而使控制系统设计得以简化并容易达到系统所要求的性能指标,不仅实现了五自由度无轴承同步磁阻电机转子的稳定悬浮,而且使得磁轴承的径向悬浮力、轴向悬浮力、电机径向悬浮力和电磁转矩6者之间实现独立控制,并有效的提高了整个系统的控制性能,获得优良的静、动态特性。采用的最小二乘支持向量机方法是在经验风险最小化的基础上同时采用了结构风险最小化准则,较好地解决了神经网络等传统的机器学习方法中的过学习、维数灾难以及过早收敛等问题,具有很高的推广应用价值,并且为其它无轴承电机及磁轴承解耦控制提供了一条有效途径。
[0012] 2.径向悬浮力控制采用三相功率逆变电路, 轴向悬浮力控制采用开关功率放大器,使得五自由度无轴承同步磁阻电机的控制方法简单,结构紧凑,功耗低,成本下降,摆脱了传统磁轴承支承的电机结构复杂,临界转速低,控制系统复杂,功率放大器造价高,体积大等缺陷。
[0013] 3.针对五个转子位置二阶积分线性子系统和一个速度一阶积分线性子系统,可进一步采用PID、极点配置、线性最优二次型调节器或鲁棒伺服调节器等方法分别设计一个转速控制器和五个位置控制器,组成线性闭环控制器,使系统获得高性能的转速、位置控制以及抗负载扰动的运行性能。
[0014] 4.本发明控制器实现了五自由度无轴承同步磁阻电机的多变量之间的独立控制,有效克服了无轴承同步磁阻电机基于磁场定向仅仅进行公式变换无法实现解耦控制这一难题,同时克服了采用前馈补偿控制器,近似处理,在线查表和实时参数检测等解耦方法只能实现系统静态解耦,不能实现系统动态解耦的缺陷。

实施方案

[0023] 如图1所示,本发明的五自由度无轴承同步磁阻电机1的结构包括三自由度主动磁轴承a、二自由度无轴承同步磁阻电机b和转子e,三自由度主动磁轴承a分别控制转子径向xa,ya和轴向za的位移,对应的三自由度主动磁轴承a径向三相线圈的驱动控制电流ia ,ib和ic,轴向线圈驱动电流iz,二自由度无轴承同步磁阻电机b控制径向xb,yb位移和转子的转速ω,径向xb,yb两个自由度位移对应的三相悬浮力绕组驱动控制电流ib2U ,ib2V和ib2W,转子的转速ω对应的三相转矩绕组驱动控制电流ib1U ,ib1V和ib1W,这种五自由度无轴承同步磁阻电机是一个非线性、强耦合的多输入多输出系统。本发明针对这种系统采用支持向量机逼近复合被控对象的a阶逆模型,将原多输入多输出系统转换成相互独立的线性积分子系统,进而采用线性系统的理论设计闭环控制器,不仅实现了五自由度无轴承同步磁阻电机位移变量和转速变量之间的多变量独立控制,并有效的提高了整个系统的控制性能。
[0024] 如图2所示,第一Clark逆变换22串接于第一电流滞环PWM逆变器23之前,由第一Clark逆变换22和第一电流滞环PWM逆变器23连接形成第一扩展的电流滞环PWM逆变器2。第一Park逆变换31、第二Clark逆变换32和第二电流滞环PWM逆变器33依次串接,形成第二扩展的电流滞环PWM逆变器3。第二Park逆变换41、第三Clark逆变换42和第三电流滞环PWM逆变器43依次串接,组成第三扩展的电流滞环PWM逆变器4。第一扩展的电流滞环PWM逆变器2和开关功率放大器5分别串接于五自由度无轴承同步磁阻电机1的三自由度主动磁轴承a之前。第二、第三扩展的电流滞环PWM逆变器3、4分别串接于二自由度无轴承同步磁阻电机b之前。
[0025] 如图3所示,三个扩展的电流滞环PWM逆变器2、3、4及开关功率放大器5与五自由度无轴承同步磁阻电机1构成一个复合被控对象8。
[0026] 如图4-6所示,复合被控对象8之前串接支持向量机α阶逆系统6,支持向量机α阶逆系统6由5个支持向量机2阶系统61、62、63、64、65和一个支持向量机1阶系统66-1加11个积分器s 构成。支持向量机α阶逆系统6串接在复合被控对象8之前线性化解耦成伪线性系统9。伪线性系统9之前串接线性闭环控制器7,线性闭环控制器7由五个转子位置控制器71、72、73、74、75及一个转速控制器76组成。采用线性系统理论分别设计五个转子位置控制器71、72、73、74、75及一个转速控制器76。
[0027] 如图7所示,由线性闭环控制器7、支持向量机α阶逆系统6、三个扩展的电流滞环PWM逆变器2、3、4及开关功率放大器5组成五自由度无轴承同步磁阻电机解耦控制器10,实现对五自由度无轴承同步磁阻电机1的解耦控制。
[0028] 如图1-7所示,构造五自由度无轴承同步磁阻电机解耦控制器10的方法是:首先由第一Clark逆变换22和第一电流滞环PWM逆变器23连接组成第一扩展的电流滞环PWM逆变器2,分别由第一、第二Park逆变换31、41、第二、第三Clark逆变换32、42和第二、第三电流滞环PWM逆变器33、43依次连接组成第二、第三扩展的电流滞环PWM逆变器3、4;接着将所述第一,第二和第三这三个扩展的电流滞环PWM逆变器2、3、4 、开关功率放大器5以及五自由度无轴承同步磁阻电机1组成复合被控对象8;进而采用5个支持向量机2阶系-1统61、62、63、64、65、1个支持向量机1阶系统66以及11个积分器s 来构造复合被控对象
8的支持向量机α阶逆系统6,并通过离线训练使支持向量机α阶逆系统6实现复合被控对象8的逆系统功能;然后将支持向量机α阶逆系统6置于复合被控对象8之前,支持向量机α阶逆系统6与复合被控对象8组成伪线性系统9,伪线性系统9等效为5个位置二阶积分型的伪线性子系统和1个位置一阶积分型的伪线性子系统;在此基础上,分别针对6个积分子系统设计5个位置控制器71、72、73、74、75和一个转速控制器76;并由上述5个位置控制器71、72、73、74、75和一个转速控制器76来构成线性闭环控制器7;最后将线性闭环控制器7、支持向量机α阶逆系统6、复合被控对象8共同构成五自由度无轴承同步磁阻电机解耦控制器10。
[0029] 第一扩展的电流跟踪逆变器2以支持向量机α阶逆系统6输出的三自由度主动磁轴承a的控制电流分量参考值 和 为其输入,经过第一Clark逆变换22输出第一电流滞环PWM逆变器23的控制电流 ,和 ,再经过第一电流跟踪逆变器23输出三自由度主动磁轴承a的三相控制电流 , 和 ,开关功率放大器5以支持向量机α阶逆系统6输出的三自由度主动磁轴承a的控制电流分量参考值 为其输入,开关功率放大器5的输出作为三自由度主动磁轴承a的轴向控制电流。第二扩展的电流跟踪逆变器3以支持向量机α阶逆系统6输出的二自由度无轴承同步磁阻电机b的径向位移控制电流分量参考值和 为其输入,经过第一Park逆变换31输出第二Clark逆变换32输入电流参考值和 ,第二Clark逆变换32输出第二电流滞环PWM逆变器33的控制电流 , 和,再经过第二电流滞环PWM逆变器33输出二自由度无轴承同步磁阻电机b的三相悬浮力绕组驱动控制电流ib2U ,ib2V和ib2W。第三扩展的电流跟踪逆变器4以支持向量机α阶逆系统6输出的二自由度无轴承同步磁阻电机b的转速控制电流分量参考值 和选定的常数为其输入,第二经过Park逆变换41输出第三Clark逆变换42输入电流参考值 和 ,第三Clark逆变换42输出第三电流滞环PWM逆变器43的控制电流 , 和 ,再经过第三电流滞环PWM逆变器43输出二自由度无轴承同步磁阻电机b的三相转矩绕组驱动控制电流ib1U ,ib1V和ib1W。此扩展的三个电流滞环PWM逆变器2、3、4作为复合被控对象8的一个组成部分。
[0030] 如图4所示,支持向量机α阶逆系统6的构造方法是:首先建立复合被控对象8的数学模型:从无轴承同步磁阻电机及磁轴承工作原理出发,建立五自由度无轴承同步磁阻电机1的数学模型,经过坐标变换和线性放大,得到复合被控对象8的数学模型,即同步旋转坐标系下11阶微分方程,计算其向量相对阶为,可知该11阶微分方程可逆,即α阶逆系统存在,采用5个支持向量机2阶系统61、62、63、-1
64、65以及一个支持向量机1阶系统66加11个积分器s 来构造复合被控对象8的支持向量机α阶逆系统6,将复合被控对象8的期望输出
的α阶导数 作为支持向量机α阶逆系统6的输
入,而支持向量机α阶逆系统6的输出为 。
[0031] 对 上 述 构 造 的 支 持 向 量 机α阶 逆 系 统6 进 行 训 练,训 练 方 法是:在实际工作区域内,将上述的6个电流分量参考值 、 、 、 、和 随机方波信号作为阶跃激励信号分别施加于复合被控对象8的输入
端,并 对 该 输 入 信 号 及 输 出 响 应
进行高速采样,得到原始数据样本{u1,u2,u3,u4,u5,
u6,y1,y2,y3,y4,y5,y6};采用高阶数值微分方法离线计算y的各阶导数{ , , ,, , , , , , , , };得到300组支持向量机α阶逆系统6的训练
样本集{ , , , , , , , , , , , , , , ,
, , ,u1,u2,u3,u4,u5,u6};根据该训练样本集,采用最小二乘法分别对复合被控对象8的6个输出量所对应的每个支持向量机2阶系统61、62、63、64、65及支持向量机1阶系统
66进行离线学习,从而获得相应的输入向量系数 和阈值 ,其中上标j 表示复合被控对象8的第j个输出对应的变量,下标i表示第i对训练样本;进而分别根据各个支持向量机
2阶系统61、62、63、64、65及支持向量机1阶系统66的当前输入 辨识出α阶逆模型的输出为 ,式中 为高斯核函数。
[0032] 将支持向量机α阶逆系统6串接在复合被控对象8之前,组成伪线性系统9,伪线性系统9相当于5个二阶线性积分子系统和1个一阶线性积分子系统,则系统被线性化和解耦成为6个互相独立的线性积分子系统。对5个二阶线性积分子系统和1个一阶线性积分子系统分别设计五个位置控制器71、72、73、74、75和一个转速控制器76构造线性闭环控制器7。线性闭环控制器7可采用线性系统理论中的各种常用控制器设计方法如极点配置、线性最优控制、PID控制、鲁棒控制等方法来设计。其中线性二次型最优控制器不仅能够克服测量噪声,并能处理非线性干扰,是反馈系统设计的一种重要工具,在本发明给出的实施例中,五个位置控制器71、72、73、74、75和一个转速控制器76均选用线性二次型最优控制理论设计控制器,控制器的参数根据实际控制对象需进行调整。将线性闭环控制器7、支持向量机α阶逆系统、三个扩展的电流滞环PWM逆变器2、3、4及开关功率放大器5共同形成五自由度无轴承同步磁阻电机支持向量机解耦控制器10。
[0033] 根据以上所述,根据不同的控制要求采用不同的硬件和软件便可实现本发明。对本领域的技术人员在不背离本发明的精神和保护范围的情况下做出的其它的变化和修改,仍包括在本发明保护范围之内。

附图说明

[0015] 图1 是五自由度无轴承同步磁阻电机1的结构示意图;
[0016] 图2 是扩展的电流滞环PWM逆变器结构示意图;
[0017] 图3 是复合被控对象8的结构示意图;
[0018] 图4 是支持向量α阶逆系统6的结构示意图;
[0019] 图5是由支持向量α阶逆系统6与复合被控对象8组成的伪线性系统9的示意图及其等效图;
[0020] 图6是五自由度无轴承同步磁阻电机1的解耦控制原理框图;
[0021] 图7是五自由度无轴承同步磁阻电机解耦控制器10的总体框图;
[0022] 图中:1.五自由度无轴承同步磁阻电机;2.第一扩展的电流滞环PWM逆变器;3.第二扩展的电流滞环PWM逆变器;4.第三扩展的电流滞环PWM逆变器;5.开关功率放大器;6.支持向量机α阶逆系统;7.线性闭环控制器;8.复合被控对象;9.支持向量机α阶逆系统;10.五自由度无轴承同步磁阻电机解耦控制器;22.第一Clark逆变换;23.第一电流滞环PWM逆变器;31.第一Park逆变换;32.第二Clark逆变换;33.第二电流滞环PWM逆变器;41.第二Park逆变换;42.第三Clark逆变换;43.第三电流滞环PWM逆变器;61、
62、63、64、65.支持向量机2阶系统;66.支持向量机1阶系统;71、72、73、74、75.转子位置控制器;76.转速控制器。
版权所有:盲专网 ©2023 zlpt.xyz  蜀ICP备2023003576号