首页 > 专利 > 杭州电子科技大学 > 自驱动的微型冲击锤专利详情

自驱动的微型冲击锤   0    0

有效专利 查看PDF
专利申请流程有哪些步骤?
专利申请流程图
申请
申请号:指国家知识产权局受理一件专利申请时给予该专利申请的一个标示号码。唯一性原则。
申请日:提出专利申请之日。
2019-01-09
申请公布
申请公布指发明专利申请经初步审查合格后,自申请日(或优先权日)起18个月期满时的公布或根据申请人的请求提前进行的公布。
申请公布号:专利申请过程中,在尚未取得专利授权之前,国家专利局《专利公报》公开专利时的编号。
申请公布日:申请公开的日期,即在专利公报上予以公开的日期。
2019-06-04
授权
授权指对发明专利申请经实质审查没有发现驳回理由,授予发明专利权;或对实用新型或外观设计专利申请经初步审查没有发现驳回理由,授予实用新型专利权或外观设计专利权。
2021-08-24
预估到期
发明专利权的期限为二十年,实用新型专利权期限为十年,外观设计专利权期限为十五年,均自申请日起计算。专利届满后法律终止保护。
2039-01-09
基本信息
有效性 有效专利 专利类型 发明专利
申请号 CN201910020108.X 申请日 2019-01-09
公开/公告号 CN109734044B 公开/公告日 2021-08-24
授权日 2021-08-24 预估到期日 2039-01-09
申请年 2019年 公开/公告年 2021年
缴费截止日
分类号 B81B7/02 主分类号 B81B7/02
是否联合申请 独立申请 文献类型号 B
独权数量 1 从权数量 1
权利要求数量 2 非专利引证数量 0
引用专利数量 8 被引证专利数量 0
非专利引证
引用专利 CN1333943A、CN101154505A、CN106537200A、CN106233174A、FR2841995A1、JP2009245876A、WO03086954A1、CN106586945A 被引证专利
专利权维持 4 专利申请国编码 CN
专利事件 事务标签 公开、实质审查、授权
申请人信息
申请人 第一申请人
专利权人 杭州电子科技大学 当前专利权人 杭州电子科技大学
发明人 董林玺、方祥、李杰、郑梦萍 第一发明人 董林玺
地址 浙江省杭州市下沙高教园区2号大街 邮编 310018
申请人数量 1 发明人数量 4
申请人所在省 浙江省 申请人所在市 浙江省杭州市
代理人信息
代理机构
专利代理机构是经省专利管理局审核,国家知识产权局批准设立,可以接受委托人的委托,在委托权限范围内以委托人的名义办理专利申请或其他专利事务的服务机构。
浙江千克知识产权代理有限公司 代理人
专利代理师是代理他人进行专利申请和办理其他专利事务,取得一定资格的人。
周希良
摘要
本发明公开了一种自驱动的微型冲击锤。本发明包括固定支撑、冲击锤、储能梁、旋转臂、固定梳齿和旋转梳齿。冲击锤的两侧与各自的储能梁一端连接,储能梁的另一端与固定支撑连接,多根旋转臂一端与销轴连接,另一端悬空;多根旋转臂同步旋转,该旋转可带动冲击锤上升或下降,完成冲击动作。本发明通过两对旋转梳齿和四个固定梳齿的结合,使得旋转臂在同样的电压下可以获得双倍的静电力,提高了存储能量和释放能量的速度,优化了锁定结构,同时还可以用电压对旋转臂进行自驱动,无需使用探针,增强了便捷性。
  • 摘要附图
    自驱动的微型冲击锤
  • 说明书附图:图1
    自驱动的微型冲击锤
  • 说明书附图:图2
    自驱动的微型冲击锤
  • 说明书附图:图3
    自驱动的微型冲击锤
  • 说明书附图:图4
    自驱动的微型冲击锤
  • 说明书附图:图5
    自驱动的微型冲击锤
  • 说明书附图:图6
    自驱动的微型冲击锤
  • 说明书附图:图7
    自驱动的微型冲击锤
  • 说明书附图:图8
    自驱动的微型冲击锤
法律状态
序号 法律状态公告日 法律状态 法律状态信息
1 2021-08-24 授权
2 2019-06-04 实质审查的生效 IPC(主分类): B81B 7/02 专利申请号: 201910020108.X 申请日: 2019.01.09
3 2019-05-10 公开
权利要求
权利要求书是申请文件最核心的部分,是申请人向国家申请保护他的发明创造及划定保护范围的文件。
1.自驱动的微型冲击锤,包括固定支撑、冲击锤、储能梁、旋转臂、固定梳齿和旋转梳齿,其特征在于:
冲击锤的两侧与各自的储能梁一端连接,储能梁的另一端与固定支撑连接,多根旋转臂一端与销轴连接,另一端悬空;多根旋转臂同步旋转,该旋转可带动冲击锤上升或下降,完成冲击动作;
每根旋转臂两侧带有旋转梳齿,与同侧的固定梳齿相对应,形成叉指状,旋转梳齿和固定梳齿都带有电容,通过向部分固定梳齿施加电压使得旋转梳齿带动旋转臂产生转动;
所述的旋转臂有两根,固定臂有三根,呈交错排列;
初始状态的冲击锤,旋转梳齿接地,对固定梳齿施加电压,固定梳齿与旋转梳齿之间产生静电力,旋转臂受到静电力的作用绕销轴逆时针旋转,通过喙钩连冲击锤向下拉,储能梁产生形变,储存机械能;通过设置合适的电压大小,旋转臂可达到最大位移,此时所存储的机械能最大;通过保持电压稳定不变,可对旋转臂进行锁定;
当需要释放能量时,去除先前施加电压,对固定梳齿施加电压,固定梳齿与旋转梳齿之间产生静电力,旋转臂受到静电力的作用绕销轴顺时针旋转,防止旋转臂阻碍锤体运动,加快释放速度,使冲击锤获得高动能。

2.根据权利要求1所述的自驱动的微型冲击锤,其特征在于:所述的固定梳齿设置在固定臂上,所述固定臂的末端带有防碰撞结构,所述防碰撞结构用于避免旋转梳齿撞击至固定臂上。
说明书

技术领域

[0001] 本发明涉及一种微机械结构,可广泛应用于跳跃机器人、对药物和疫苗的无针输送、研究在微观尺度上的断裂以及设计一种自毁传感器。

背景技术

[0002] 微机电系统(Micro Electro Mechanical Systems,简称MEMS),是将微电子技术与机械工程融合到一起的一种工业技术。MEMS器件可用于集成电路相兼容的工艺进行大批量、低成本生产,因此性价比相对于传统制造技术有很大程度提高。MEMS 技术是最适于开发智能化产品的技术,它能够提高微电子产品的计算能力及微传感器和微执行器的感知和控制能力。以硅为基础的微机械加工工艺分为多种,传统上往往将其归纳为两大类,即体硅加工工艺和表面硅加工工艺。前者一般是对体硅进行三维加工,以衬底单晶硅片作为机械结构;后者则利用与普通集成电路工艺相似的平面加工手段,以硅(单晶或多晶)薄膜作为机械结构。
[0003] SOI(Silicon‑On‑Insulator,绝缘衬底上的硅)技术是在顶层硅和背衬底之间引入了一层埋氧化层。它通过绝缘埋层实现了器件和衬底的全介质隔离。通过在绝缘体上形成半导体薄膜,SOI材料具有了体硅所无法比拟的优点:可以实现集成电路中元器件的介质隔离,彻底消除了体硅CMOS电路中的寄生闩锁效应;采用这种材料制成的集成电路还具有寄生电容小、集成密度高、速度快、工艺简单、短沟道效应小及特别适用于低压低功耗电路等优势。所以本发明采用单掩膜SOI工艺来制备该微型冲击锤。
[0004] 微致动器作为MEMS的核心,它的主要作用在于存储和释放机械能,其最基本的工作原理是将其他能量(一般是电能)转换为机械能。微致动器的致动方式包括静电、热、磁、压电和形状记忆合金等等,其中静电式微致动器应用较为广泛,静电作用属于表面力,它和器件尺寸的二次方成正比,在尺寸微小化时,能够产生很大的能量。其优点是:(1)采用电压控制;(2)驱动力与体积比极高;(3)其制作工艺与IC相仿;(4)短时间响应;(5)低温度依赖性。但是由于静电力驱动获得的力通常是很小的而且静电力与电极施加的电压的平方成正比,与电极间距离的平方成反比。因此要输出较大驱动力就必须施加大电压。
[0005] MEMS器件通常用于能量收集应用中,通常使用压电材料进行能量转换。目前,在微观尺度上的机械能量存储和快速释放以及自驱动的MEMS微型冲击锤做的研究十分有限,其中想要启动致动器必须要先使用探针进行操作,非常的不便捷,从而实际中无法得到广泛应用。因此,优化致动结构,增加机械利益,使得静电式微型冲击锤得以自驱动,是亟需解决的问题。

发明内容

[0006] 为了克服上述背景技术所存在的不足, 本发明提供一种自驱动微型冲击锤。该微型冲击锤改进了传统的驱动方式,使用自驱动的方法,能够通过改变电压和电极进行控制。同时改进了传动锁定结构,从而使冲击锤能够快速存储和释放机械能。
[0007] 本发明解决其技术问题所采用的技术方案是:
[0008] 本发明包括固定支撑、冲击锤、储能梁、旋转臂、固定梳齿和旋转梳齿。
[0009] 冲击锤的两侧与各自的储能梁一端连接,储能梁的另一端与固定支撑连接,多根旋转臂一端与销轴连接,另一端悬空;多根旋转臂同步旋转,该旋转可带动冲击锤上升或下降,完成冲击动作。
[0010] 所述的每根旋转臂两侧带有旋转梳齿,与同侧的固定梳齿相对应,形成叉指状,旋转梳齿和固定梳齿都带有电容,通过向部分固定梳齿施加电压使得旋转梳齿带动旋转臂产生转动。
[0011] 进一步说,所述的固定梳齿设置在固定臂上,所述固定臂的末端带有防碰撞结构,所述防碰撞结构用于避免旋转梳齿撞击至固定臂上。
[0012] 进一步说,所述的旋转臂有两根,固定臂有三根,呈交错排列。
[0013] 本发明的有益效果是:通过两对旋转梳齿和四个固定梳齿的结合,使得旋转臂在同样的电压下可以获得双倍的静电力,提高了存储能量和释放能量的速度,优化了锁定结构,同时还可以用电压对旋转臂进行自驱动,无需使用探针,增强了便捷性。

实施方案

[0023] 下面结合附图和实施例对本发明进一步说明。
[0024] 在图1、图2、图3、图4和图5所示,冲击锤4的两侧与各自的储能梁2一端连接,储能梁的另一端与固定支撑1连接,两旋转臂10.1、10.2一端与销轴6连接,另一端悬空;旋转臂同步旋转,通过旋转臂末端的喙5带动带动冲击锤上升或下降,完成冲击动作。
[0025] 所述的旋转臂两侧带有旋转梳齿,与同侧的固定梳齿相对应,形成叉指状,即旋转梳齿9.1对应固定梳齿8.1,旋转梳齿9.2对应固定梳齿8.2,旋转梳齿9.3对应固定梳齿8.3,旋转梳齿9.4对应固定梳齿8.4;旋转梳齿和固定梳齿都带有电容,通过向部分固定梳齿施加电压使得旋转梳齿带动旋转臂产生转动。两对旋转梳齿和四个固定梳齿能够大大增加旋转臂所受的驱动力。旋转臂可以通过电压锁定,其喙钩住冲击器锤体,锤体与储能梁相连接。当结构储能锁定之后,需要释放能量时,对部分固定梳齿施加电压,由于静电力的作用旋转臂向顺时针转动,带动喙对冲击锤的解除锁定,储能梁释放能量,冲击锤获得高机械能。
[0026] 其中固定支撑1、6、固定臂7.11、7.21、7.31、旋转支撑7.12、7.22、7.23、7.32固定结构都与氧化硅层12键合,无法移动,其余部分下方氧化硅层全部被腐蚀去除;其中,旋转支撑7.12、7.22、7.23、7.32用于支撑旋转臂10.1或10.2,以避免旋转梳齿与固定臂接触或距离太近,造成梳齿毁坏;旋转臂10.1和旋转臂10.2一体,可绕销轴6转动。
[0027] 在图2中,组件编号表示同图1,为图1中喙与冲击锤钩连部分放大图,通过喙带动冲击锤。
[0028] 在图6中,组件编号表示同图1,对固定梳齿施加电压,使得旋转臂逆时针转动,不再移动后即对旋转臂锁定。
[0029] 在图7中,组件编号表示同图1,固定梳齿施加电压,旋转臂顺时针转动,解除锁定,释放能量。
[0030] 在图8中,组件编号表示同图1,旋转臂被锁定之后,冲击锤向下产生位移,使得储能梁形变存储机械能。
[0031] 本发明的工作过程:如图1所示,为冲击锤的初始状态,旋转梳齿接地,对固定梳齿8.2、8.4施加电压,固定梳齿8.2与旋转梳齿9.2之间以及固定梳齿8.4和旋转梳齿9.4之间都产生静电力,旋转臂10.1和10.2受到静电力的作用绕销6逆时针旋转,通过喙5钩连冲击锤4向下拉,储能梁2产生形变,储存机械能。通过设置合适的电压大小,旋转臂可达到最大位移,此时所存储的机械能最大。通过保持电压稳定不变,可对旋转臂进行锁定。当需要释放能量时,去除先前施加电压,对固定梳齿8.1和8.3施加电压,固定梳齿8.1与旋转梳齿9.1之间以及固定梳齿8.3和旋转梳齿9.3之间都产生静电力,旋转臂10.1和10.2受到静电力的作用绕销6顺时针旋转,防止旋转臂阻碍锤体运动,加快释放速度,使冲击锤4获得高动能(速度)。

附图说明

[0014] 图1为本发明的结构俯视图。
[0015] 图2为图1中虚线部分放大图,即喙与冲击锤钩连部分。
[0016] 图3为本发明的结构后视图。
[0017] 图4为本发明的结构前视图。
[0018] 图5为本发明的结构左视图。
[0019] 图6为图1中结构装载储能状态下的梳齿部分结构俯视图。
[0020] 图7为图1中结构装载释放能量状态下的结构俯视图。
[0021] 图8为图1中结构装载储能状态下的冲击锤部分结构俯视图。
[0022] 图1‑5中各部分组件如下:1:固定支撑,2:储能梁,3:冲击锤顶端,4:冲击锤,5:喙,6:销轴,7.11、7.21、7.31:固定臂,7.12、7.22、7.23、7.32:旋转支撑8.1、8.2、8.3、8.4:固定梳齿,9.1、9.2、9.3、9.4:旋转梳齿,10.1、10.2:旋转臂,11:承载晶片层,12:氧化硅层。
版权所有:盲专网 ©2023 zlpt.xyz  蜀ICP备2023003576号