首页 > 专利 > 杭州电子科技大学 > 计及空调用户舒适度的需求侧响应方法专利详情

计及空调用户舒适度的需求侧响应方法   0    0

有效专利 查看PDF
专利申请流程有哪些步骤?
专利申请流程图
申请
申请号:指国家知识产权局受理一件专利申请时给予该专利申请的一个标示号码。唯一性原则。
申请日:提出专利申请之日。
2019-03-29
申请公布
申请公布指发明专利申请经初步审查合格后,自申请日(或优先权日)起18个月期满时的公布或根据申请人的请求提前进行的公布。
申请公布号:专利申请过程中,在尚未取得专利授权之前,国家专利局《专利公报》公开专利时的编号。
申请公布日:申请公开的日期,即在专利公报上予以公开的日期。
2019-08-16
授权
授权指对发明专利申请经实质审查没有发现驳回理由,授予发明专利权;或对实用新型或外观设计专利申请经初步审查没有发现驳回理由,授予实用新型专利权或外观设计专利权。
2021-03-30
预估到期
发明专利权的期限为二十年,实用新型专利权期限为十年,外观设计专利权期限为十五年,均自申请日起计算。专利届满后法律终止保护。
2039-03-29
基本信息
有效性 有效专利 专利类型 发明专利
申请号 CN201910249057.8 申请日 2019-03-29
公开/公告号 CN110044020B 公开/公告日 2021-03-30
授权日 2021-03-30 预估到期日 2039-03-29
申请年 2019年 公开/公告年 2021年
缴费截止日
分类号 G06Q10/00F24F11/64F24F11/46F24F110/10F24F110/20F24F120/20 主分类号 G06Q10/00
是否联合申请 独立申请 文献类型号 B
独权数量 1 从权数量 0
权利要求数量 1 非专利引证数量 0
引用专利数量 9 被引证专利数量 0
非专利引证
引用专利 CN105990838A、CN107748944A、CN107563547A、CN108039710A、CN105356604A、CN108988348A、CN105576665A、CN104636987A、US2015/0355650A1 被引证专利
专利权维持 3 专利申请国编码 CN
专利事件 事务标签 公开、实质审查、授权
申请人信息
申请人 第一申请人
专利权人 杭州电子科技大学 当前专利权人 杭州电子科技大学
发明人 徐林、罗平、闫文乐、姜淏予、韩露杰 第一发明人 徐林
地址 浙江省杭州市下沙高教园区2号大街 邮编 310018
申请人数量 1 发明人数量 5
申请人所在省 浙江省 申请人所在市 浙江省杭州市
代理人信息
代理机构
专利代理机构是经省专利管理局审核,国家知识产权局批准设立,可以接受委托人的委托,在委托权限范围内以委托人的名义办理专利申请或其他专利事务的服务机构。
杭州君度专利代理事务所 代理人
专利代理师是代理他人进行专利申请和办理其他专利事务,取得一定资格的人。
朱月芬
摘要
本发明公开了一种计及空调用户舒适度的需求侧响应方法。本发明首先通过近邻传播聚类算法对分体空调群和中央空调群进行聚类,并利用温湿度指数来考虑空调用户的舒适度对空调群对应室温范围的影响,从而得到不同空调负荷聚合商在日前电力市场中能提供的最大可调度时长及最大可调度容量。各空调负荷聚集商根据聚合的结果参与电力公司调度中心的削峰调度招标计划。电力公司通过对比各负荷聚合商的投标方案,在综合考虑各聚合商的信誉度指数和报价之后,选择削峰成本最低的方案,合理分配调度容量。
  • 摘要附图
    计及空调用户舒适度的需求侧响应方法
法律状态
序号 法律状态公告日 法律状态 法律状态信息
1 2021-03-30 授权
2 2019-08-16 实质审查的生效 IPC(主分类): F24F 11/64 专利申请号: 201910249057.8 申请日: 2019.03.29
3 2019-07-23 公开
权利要求
权利要求书是申请文件最核心的部分,是申请人向国家申请保护他的发明创造及划定保护范围的文件。
1.计及空调用户舒适度的需求侧响应方法,其特征在于:该方法具体包括以下步骤:
步骤1、考虑不同类型的空调用户对于价格的敏感程度,当不考虑用户舒适度的限制时,将空调用户群体分为以下三种类型进行讨论:
1)该类空调用户属于对价格不太敏感的类型,对室温环境的要求比较高,因此假设其室温允许范围是[23,25]℃;
2)该类空调用户属于对价格敏感程度一般的类型,对室温环境的要求适中,因此假设其室温允许范围是[23,27]℃;
3)该类空调用户属于对价格比较敏感的类型,对室温环境的要求比较低,因此假设其室温允许范围是[23,29]℃;
步骤2、在考虑空调负荷群体初始状态差异性和不同类型用户的室温允许范围要求的基础上,通过近邻传播聚类算法对分散的空调负荷群体进行聚合;
1)根据式(1)和(2)计算相似度和偏向参数p,构建相似度矩阵S;将吸引度R(i,j)和归属度A(i,j)初始化为零;
2 2
S(i,j)=‑d(xi,xj)=‑||xi‑xj|| ,i≠j           (1)
p=median(S(i,j))i≠j                  (2)
式中,median表示对数据取中值;
2)利用式(3)到式(6)的公式对吸引度R(i,j)和归属度A(i,j)进行迭代更新,并计算两者加权和,得到最终吸引度、归属度和聚类中心;
Rt+1(i,j′)=(1‑λ)×Rt+1(i,j′)+λ×Rt(i,j′)               (5)
At+1(i,j′)=(1‑λ)×At+1(i,j′)+λ×At(i,j′)               (6)
式中,λ为阻尼系数,把它引入吸引度R(i,j)和归属度A(i,j)的迭代计算中,以加快算法的收敛速度;
3)当算法达到最大迭代次数,或聚类中心在连续迭代过程中不再发生变化,或相邻两次迭代结果中,吸引度R(i,j)和归属度A(i,j)变化量小于给定阈值则认为算法收敛,则输出最终结果;如果不收敛,则转到2);
步骤3、综合考虑室内温度和相对湿度这两个指标,利用温湿指数来衡量空调用户的舒适度;温湿指数THI通常按公式(7)计算:
THI=1.8t‑0.55(1‑RH)(1.8t‑26)+32             (7)
式中,t表示摄氏温度,℃;RH表示空气相对湿度,%;
当THI值超出[45,75]时,人们普遍感觉不舒适;当THI值在[45,75]之内时,绝大多数人感到些许不舒适,但是还可以承受;当THI值在[55,70]之内时,大部分人感到很舒适,在此环境下生活工作时,心情会很愉悦;
根据《民用建筑供暖通风与空气调节设计规范》规定,人员长期逗留区域空调室内相对湿度应保持在40%~60%;当室内相对湿度为40%,温湿指数THI在55~72之间时,室温的允许范围是[12.0,26.1]℃;当室内相对湿度为60%,温湿指数THI在55~72之间时,室温的允许范围是[12.3,24.4]℃;对比以上两种场景下的室温允许范围可知,当室内相对湿度越大时,人体对于室温的要求越严苛;
根据温湿指数修正三类空调负荷工作的室温范围,以室内相对湿度40%为例,第三类用户的室温允许范围从[23,29]℃进一步缩小为[23,26.1]℃,第二类用户的室温允许范围从[23,27]℃缩小为[23,26.1]℃,第一类用户的室温上下限范围没有受到影响;
步骤4、对分体空调采用直接启停控制策略,中央空调选用轮停控制策略;由步骤2中决定的室内温度范围,分别计算得到考虑用户舒适度情况下分体空调负荷群和中央空调负荷群的最大可参与调度时长和最大可调度容量;
1)利用公式(8)计算分体空调负荷集群最大可参与调度时长
式中, 表示t+1时刻的室内温度,℃; 表示t+1时刻的室外温度,℃; 表示t时刻的室内温度,℃;R为等效热阻,℃/W;C为等效热容,J/℃;通过式(8)利用室外温度和室温允许的范围得到分体空调负荷集群允许停止的最长可参与调度时长△t;
分体空调负荷集群的最大可参与调度容量由公式(9)计算得到;
QHA=n·PHA                              (9)
式中,QHA表示分体空调负荷集群的最大可参与调度容量,n表示可参与调度的分体空调数量,PHA表示分体空调的额定功率;
2)由于中央空调采用轮停控制,由等效热参数法的空调负荷模型可得室温允许上下限为[Tmin,Tmax]时,中央空调启停时间应该满足的关系如式(10)所示:
进一步可推导出制冷机启/停周期内停机期和制冷期的允许时长分别为:
式中:τoff为制冷机组停机期时长,min;τon为制冷机组制冷期时长,min;τc为启/停周期时长,min;To为室外温度,℃;Q为制冷机的制冷量,kW;cop为空调能效比,为空调额定功率,kW;
最大可参与调度容量如式(12)所示:
式中,QCA表示中央空调负荷集群的最大可参与调度容量,n表示参与轮停的中央空调数量;
步骤5、以电力公司的削峰成本最小为目标建立计及负荷聚合商信誉度的日前优化调度模型;电力公司的削峰成本包括电力公司支付给各负荷聚合商的调度费用;储能设备的投资和运行维护费用和各负荷聚合商的违约处罚金;该优化问题的目标函数的表达式如式(13)所示:
式中:U为电力公司的削峰成本,ηi为负荷聚合商i的信誉度值,Ci为负荷聚合商i所上报的响应调度费用, 为负荷聚合商i所报激励价格,Q′i为负荷聚合商实际中标电量,Ki为聚合商i所对应的储能设备成本,k为储能设备的单位价格,Fi为负荷聚合商i的违约处罚金,βi为负荷聚合商i的违约率,s为电力公司针对负荷聚合商违约电量的处罚金单价;
该优化问题的约束条件为:各削峰时段所有负荷聚合商的总中标电量不小于电力公司计划削峰量;每个负荷聚合商的中标电量不大于投标电量;投标电量不能超出该负荷聚合商的调度潜力和负荷聚合商的可调控时长不小于电力公司计划调度时长;上述约束条件如式(14)所示:
式中:Q′i为负荷聚合商i实际中标电量,Q计划为电力公司计划削峰量,Di为负荷聚合商i向电力公司上报的投标电量,Qi为负荷聚合商i的负荷调度潜力, 为负荷聚合商i的可调控时长,Tload为电力公司计划调度时长;
步骤6、采用混沌粒子群优化算法对该优化问题进行求解,得到各负荷聚合商在不同时段中标的容量以及电网公司削峰的成本。
说明书

技术领域

[0001] 本发明属于需求侧响应技术领域,具体涉及考虑中央、分体空调负荷用户舒适度的需求侧响应方法。

背景技术

[0002] 为了应对能源危机、环境污染带来的巨大挑战,许多国家积极倡导发展智能配电网技术以推动后石油时代经济转型、发展低碳经济。随着智能配电网和电力市场的不断发展,需求侧资源在电力市场中的作用也越发重要。在电力市场竞争中引入需求响应机制,高效整合供给侧和需求侧的资源,构建供需互动的智能配电网已然成为发展趋势。
[0003] 空调负荷属于温控负荷,其具有热存储能力,因此可以在满足用户舒适度要求的前提下,通过有效的控制手段,达到快速响应电网侧调度的目的。合理控制空调负荷不仅可以缓解高峰时段的电力供需矛盾,改善负荷曲线峰谷差;而且与传统削峰方式相比,空调负荷的调度成本较低。聚合后的空调负荷可调度潜力巨大,属于非常重要的需求侧资源。
[0004] 由于人体对室内环境有一定的舒适度要求,因此空调负荷在参与调度时,室温上下限必须控制在热舒适度范围之内。一旦超过特定阈值,用户将不再允许空调负荷参与调控。因此,当聚类后的空调负荷参与电力公司的削峰运行时,如何在不影响用户舒适度的情况选择合适的空调负荷聚合商使得电网调度的成本最小依然是个亟待解决的问题。

发明内容

[0005] 本发明以某区域分体空调和中央空调负荷集群为研究对象,提出计及空调用户舒适度的需求侧响应方法。本发明首先通过近邻传播聚类算法对不同初始条件和不同类型的用户分体空调群和中央空调群进行聚类,并利用温湿度指数来考虑空调用户的舒适度,从而修正空调群对应的室温限制范围,在此基础上得到不同空调负荷聚合商在日前电力市场中能提供的最大可调度时长及最大可调度容量。另一方面,电力公司调度中心根据日前电力负荷短期预测结果,制定包含削峰时段、削峰容量和削峰时长等信息的调度计划,并公开招投标。各负荷聚合商在接收到招标信息以后,从预先聚合的全部空调负荷集群中筛选出满足该削峰时段调度时长的部分,并根据历史激励响应情况预估可调度容量参与日前电力市场招投标。电力公司通过对比各负荷聚合商的投标方案,在综合考虑各聚合商的信誉度指数和报价之后,选择削峰成本最低的方案,合理分配调度容量。具体按照以下步骤实施:
[0006] 步骤1、考虑不同类型的空调用户对于价格的敏感程度,当不考虑用户舒适度的限制时,将空调用户群体分为以下三种类型进行讨论:
[0007] 1)该类空调用户属于对价格不太敏感的类型,对室温环境的要求比较高,因此假设其室温允许范围是[23,25]℃;
[0008] 2)该类空调用户属于对价格敏感程度一般的类型,对室温环境的要求适中,因此假设其室温允许范围是[23,27]℃;
[0009] 3)该类空调用户属于对价格比较敏感的类型,对室温环境的要求比较低,因此假设其室温允许范围是[23,29]℃;
[0010] 步骤2、在考虑空调负荷群体初始状态差异性和不同类型用户的室温允许范围要求的基础上,通过近邻传播聚类算法对分散的空调负荷群体进行聚合;
[0011] 1)根据式(1)和(2)计算相似度和偏向参数p,构建相似度矩阵S;令 k=1,将吸引度R(i,j)和归属度A(i,j)初始化为零;
[0012] s(i,j)=‑d2(xi,xj)=‑||xi‑xj||2,i≠j   (1)
[0013] p=median(S(i,j)) i≠j   (2)
[0014] 式中,median表示对数据取中值;
[0015] 2)令k=k+1,利用式(3)到式(6)的公式对吸引度R(i,j)和归属度A(i, j)进行迭代更新,并计算两者加权和,得到最终吸引度、归属度和聚类中心;
[0016]
[0017]
[0018] Rt+1(i,j′)=(1‑λ)×Rt+1(i,j′)+λ×Rt(i,j′)   (5)
[0019] At+1(i,j′)=(1‑λ)×At+1(i,j′)+λ×At(i,j′)   (6)
[0020] 式中,λ为阻尼系数,把它引入吸引度R(i,j)和归属度A(i,j)的迭代计算中,以加快算法的收敛速度;
[0021] 3)当算法达到最大迭代次数,或聚类中心在连续迭代过程中不再发生变化,或相邻两次迭代结果中,吸引度R(i,j)和归属度A(i,j)变化量小于给定阈值则认为算法收敛,则输出最终结果;如果不收敛,则转到2);
[0022] 步骤3、综合考虑室内温度和相对湿度这两个指标,利用温湿指数来衡量空调用户的舒适度;温湿指数THI通常按公式(7)计算:
[0023] THI=1.8t‑0.55(1‑RH)(1.8t‑26)+32   (7)
[0024] 式中,t表示摄氏温度,℃;RH表示空气相对湿度,%;
[0025] 当THI值超出[45,75]时,人们普遍感觉不舒适;当THI值在[45,75]之内时,绝大多数人感到些许不舒适,但是还可以承受;当THI值在[55,70]之内时,大部分人感到很舒适,在此环境下生活工作时,心情会很愉悦;
[0026] 根据《民用建筑供暖通风与空气调节设计规范》规定,人员长期逗留区域空调室内相对湿度应保持在40%~60%;当室内相对湿度为40%,温湿指数 THI在55~72之间时,室温的允许范围是[12.0,26.1]℃;当室内相对湿度为 60%,温湿指数THI在55~72之间时,室温的允许范围是[12.3,24.4]℃;对比以上两种场景下的室温允许范围可知,当室内相对湿度越大时,人体对于室温的要求越严苛;
[0027] 根据温湿指数修正三类空调负荷工作的室温范围,以室内相对湿度40%为例,第三类用户的室温允许范围从[23,29]℃进一步缩小为[23,26.1]℃,第二类用户的室温允许范围从[23,27]℃缩小为[23,26.1]℃,第一类用户的室温上下限范围没有受到影响;
[0028] 步骤4、对分体空调采用直接启停控制策略,中央空调选用轮停控制策略;由步骤2中决定的室内温度范围,分别计算得到考虑用户舒适度情况下分体空调负荷群和中央空调负荷群的最大可参与调度时长和最大可调度容量;
[0029] 1)利用公式(8)计算分体空调负荷集群最大可参与调度时长
[0030]
[0031] 式中, 表示t+1时刻的室内温度,℃; 表示t+1时刻的室外温度,℃; 表示t时刻的室内温度,℃;R为等效热阻,℃/W;C为等效热容,J/℃;通过式(8)利用室外温度和室温允许的范围得到分体空调负荷集群允许停止的最长可参与调度时长Δt;
[0032] 分体空调负荷集群的最大可参与调度容量由公式(9)计算得到;
[0033] QHA=n·PHA   (9)
[0034] 式中,QHA表示分体空调负荷集群的最大可参与调度容量,n表示可参与调度的分体空调数量,PHA表示分体空调的额定功率;
[0035] 2)由于中央空调采用轮停控制,由等效热参数法的空调负荷模型可得室温允许上下限为[Tmin,Tmax]时,中央空调启停时间应该满足的关系如式(10) 所示:
[0036]
[0037] 进一步可推导出制冷机启/停周期内停机期和制冷期的允许时长分别为:
[0038]
[0039] 式中:τoff为制冷机组停机期时长,min;τon为制冷机组制冷期时长,min;τc为启/停周期时长,min;To为室外温度,℃;R为建筑围护结构等效热阻,℃ /kW;Q为制冷机的制冷量,kW;cop为空调能效比, 为空调额定功率,kW;
[0040] 最大可参与调度容量如式(12)所示:
[0041]
[0042] 式中,QCA表示中央空调负荷集群的最大可参与调度容量,n表示参与轮停的中央空调数量;
[0043] 步骤5、以电力公司的削峰成本最小为目标建立计及负荷聚合商信誉度的日前优化调度模型;电力公司的削峰成本包括电力公司支付给各负荷聚合商的调度费用;储能设备的投资和运行维护等费用和各负荷聚合商的违约处罚金;该优化问题的目标函数的表达式如式(13)所示:
[0044]
[0045] 式中:U为电力公司的削峰成本,ηi为负荷聚合商i的信誉度值,Ci为负荷聚合商i所上报的响应调度费用, 为负荷聚合商i所报激励价格,Qi'为负荷聚合商实际中标电量,Ki为聚合商i所对应的储能设备成本,k为储能设备的单位价格,Fi为负荷聚合商i的违约处罚金,βi为负荷聚合商i的违约率,s为电力公司针对负荷聚合商违约电量的处罚金单价;
[0046] 该优化问题的约束条件为:各削峰时段所有负荷聚合商的总中标电量不小于电力公司计划削峰量;每个负荷聚合商的中标电量不大于投标电量;投标电量不能超出该负荷聚合商的调度潜力和负荷聚合商的可调控时长不小于电力公司计划调度时长;上述约束条件如式(14)所示:
[0047]
[0048] 式中:Qi'为负荷聚合商i实际中标电量,Q计划为电力公司计划削峰量,Di为负荷聚合商i向电力公司上报的投标电量,Qi为负荷聚合商i的负荷调度潜力, 为负荷聚合商i的可调控时长,Tload为电力公司计划调度时长;
[0049] 步骤7、采用混沌粒子群优化算法对该优化问题进行求解,得到各负荷聚合商在不同时段中标的容量以及电网公司削峰的成本。
[0050] 本发明方法具有的优点及有益结果为:
[0051] 1)本发明考虑了室内温度和湿度对空调用户舒适度影响,并根据用户对舒适度要求的不同将空调用户分为了三类,从而使得室温约束范围的确定更加合理。
[0052] 2)利用近邻传播聚类算法对不同初始温度分布和不同类型空调负荷群聚合,并在此基础上得到不同类型用户能参与削峰调度的最大时长和最大容量,从而简化了对空调负荷聚集商的最大调度时长和最大可调度容量的计算。
[0053] 3)考虑因此负荷聚合结果的不确定性,负荷聚合商也存在着违约可能。因此将负荷聚合商信誉度也纳入优化的目标函数中,同等条件下选用信誉度高的负荷聚合商,从而减少违约情况的发生,达到保证电力系统安全、稳定运行以及保护电网利益的目的。

实施方案

[0054] 下面结合具体实施方式对本发明进行详细的说明。
[0055] 本发明提出的计及空调用户舒适度的需求侧响应方法,按照以下步骤实施。
[0056] 步骤1、考虑不同类型的空调用户对于价格的敏感程度,当不考虑用户舒适度的限制时,可将空调用户群体分为以下三种类型进行讨论:
[0057] 1)该类空调用户属于对价格不太敏感的类型,对室温环境的要求比较高,因此假设其室温允许范围是[23,25]℃。
[0058] 2)该类空调用户属于对价格敏感程度一般的类型,对室温环境的要求适中,因此假设其室温允许范围是[23,27]℃。
[0059] 3)该类空调用户属于对价格比较敏感的类型,对室温环境的要求比较低,因此假设其室温允许范围是[23,29]℃。
[0060] 步骤2、在考虑空调负荷群体初始状态差异性和不同类型用户的室温允许范围要求的基础上,通过近邻传播聚类算法对分散的空调负荷群体进行聚合。
[0061] 1)根据式(1)和(2)计算相似度和偏向参数p,构建相似度矩阵S。令 k=1,将吸引度R(i,j)和归属度A(i,j)初始化为零。
[0062] s(i,j)=‑d2(xi,xj)=‑||xi‑xj||2,i≠j   (1)
[0063] p=median(S(i,j)) i≠j   (2)
[0064] 式中,median表示对数据取中值。
[0065] 2)令k=k+1,利用式(3)到式(6)的公式对吸引度R(i,j)和归属度A(i, j)进行迭代更新,并计算两者加权和,得到最终吸引度、归属度和聚类中心。
[0066]
[0067]
[0068] Rt+1(i,j′)=(1‑λ)×Rt+1(i,j′)+λ×Rt(i,j′)   (5)
[0069] At+1(i,j′)=(1‑λ)×At+1(i,j′)+λ×At(i,j′)   (6)
[0070] 式中,λ为阻尼系数,把它引入吸引度R(i,j)和归属度A(i,j)的迭代计算中,以加快算法的收敛速度。
[0071] 3)当算法达到最大迭代次数,或聚类中心在连续迭代过程中不再发生变化,或相邻两次迭代结果中,吸引度R(i,j)和归属度A(i,j)变化量小于给定阈值则认为算法收敛,则输出最终结果;如果不收敛,则转到2)。
[0072] 步骤3、综合考虑室内温度和相对湿度这两个指标,利用温湿指数来衡量空调用户的舒适度。温湿指数THI通常按公式(7)计算:
[0073] THI=1.8t‑0.55(1‑RH)(1.8t‑26)+32   (7)
[0074] 式中,t表示摄氏温度,℃;RH表示空气相对湿度,%。
[0075] 当THI值超出[45,75]时,人们普遍感觉不舒适;当THI值在[45,75]之内时,绝大多数人感到些许不舒适,但是还可以承受;当THI值在[55,70]之内时,大部分人感到很舒适,在此环境下生活工作时,心情会很愉悦。
[0076] 根据《民用建筑供暖通风与空气调节设计规范》规定,人员长期逗留区域空调室内相对湿度应保持在40%~60%。当室内相对湿度为40%,温湿指数 (THI)在55~72之间时,室温的允许范围是[12.0,26.1]℃;当室内相对湿度为60%,温湿指数(THI)在55~72之间时,室温的允许范围是[12.3,24.4]℃。对比以上两种场景下的室温允许范围可知,当室内相对湿度越大时,人体对于室温的要求越严苛。
[0077] 根据温湿指数修正三类空调负荷工作的室温范围,以室内相对湿度40%为例,第三类用户的室温允许范围从[23,29]℃进一步缩小为[23,26.1]℃,第二类用户的室温允许范围从[23,27]℃缩小为[23,26.1]℃,第一类用户的室温上下限范围没有受到影响。当然,室内湿度可以根据具体情况进行调整,得到对应情况下不同用户的室温允许范围。
[0078] 步骤4、本发明对分体空调采用直接启停控制策略,中央空调选用轮停控制策略。由步骤2中决定的室内温度范围,分别计算得到考虑用户舒适度情况下分体空调负荷群和中央空调负荷群的最大可参与调度时长和最大可调度容量。
[0079] 1)利用公式(8)计算分体空调负荷集群最大可参与调度时长
[0080]
[0081] 式中, 表示t+1时刻的室内温度,℃; 表示t+1时刻的室外温度,℃; 表示t时刻的室内温度,℃;R为等效热阻,℃/W;C为等效热容,J/℃;通过式(8)利用室外温度和室温允许的范围得到分体空调负荷集群允许停止的最长可参与调度时长Δt;
[0082] 分体空调负荷集群的最大可参与调度容量由公式(9)计算得到;
[0083] QHA=n·PHA   (9)
[0084] 式中,QHA表示分体空调负荷集群的最大可参与调度容量,n表示可参与调度的分体空调数量,PHA表示分体空调的额定功率;
[0085] 2)由于中央空调采用轮停控制,由等效热参数法的空调负荷模型可得室温允许上下限为[Tmin,Tmax]时,中央空调启停时间应该满足的关系如式(10) 所示:
[0086]
[0087] 进一步可推导出制冷机启/停周期内停机期和制冷期的允许时长分别为:
[0088]
[0089] 式中:τoff为制冷机组停机期时长,min;τon为制冷机组制冷期时长,min;τc为启/停周期时长,min;To为室外温度,℃;R为建筑围护结构等效热阻,℃ /kW;Q为制冷机的制冷量,kW;cop为空调能效比, 为空调额定功率,kW。
[0090] 最大可参与调度容量如式(12)所示:
[0091]
[0092] 式中,QCA表示中央空调负荷集群的最大可参与调度容量,n表示参与轮停的中央空调数量。
[0093] 步骤5、以电力公司的削峰成本最小为目标建立计及负荷聚合商信誉度的日前优化调度模型。电力公司的削峰成本包括电力公司支付给各负荷聚合商的调度费用;储能设备的投资和运行维护等费用和各负荷聚合商的违约处罚金。该优化问题的目标函数的表达式如式(13)所示:
[0094]
[0095] 式中:U为电力公司的削峰成本,ηi为负荷聚合商i的信誉度值,Ci为负荷聚合商i所上报的响应调度费用, 为负荷聚合商i所报激励价格,Qi'为负荷聚合商实际中标电量,Ki为聚合商i所对应的储能设备成本,k为储能设备的单位价格,Fi为负荷聚合商i的违约处罚金,βi为负荷聚合商i的违约率,s为电力公司针对负荷聚合商违约电量的处罚金单价。
[0096] 该优化问题的约束条件为:各削峰时段所有负荷聚合商的总中标电量不小于电力公司计划削峰量;每个负荷聚合商的中标电量不大于投标电量;投标电量不能超出该负荷聚合商的调度潜力和负荷聚合商的可调控时长不小于电力公司计划调度时长。上述约束条件如式(14)所示:
[0097]
[0098] 式中:Qi'为负荷聚合商i实际中标电量,Q计划为电力公司计划削峰量,Di为负荷聚合商i向电力公司上报的投标电量,Qi为负荷聚合商i的负荷调度潜力, 为负荷聚合商i的可调控时长,Tload为电力公司计划调度时长。
[0099] 步骤7、采用混沌粒子群优化算法对该优化问题进行求解,得到各负荷聚合商在不同时段中标的容量以及电网公司削峰的成本。
[0100] 实施例
[0101] 为了更好介绍本发明对考虑用户舒适度情况下分体空调和中央空调群可调度时长和可调度容量的计算方法,分别选取了600台参数分体空调和600台中央空调,这些空调具有相同或者相近的参数,分体空调和中央空调的额定功率分别为2.5kW和160kW。假设空2 2
调所属建筑的等效热容C服从N(0.18,0.2) 随机正态分布,等效热阻R服从N(5.56,1)随机正态分布,空调用户的初始室内温度在[22,24]℃之间均匀分布。由于中央空调采用轮停控制策略,因此不用考虑初始室温的影响。具体的空调台数、空调类型和空调特性可以根据不同负荷聚集商所辖范围的资源决定,本发明给出的计算方法不受影响。
[0102] 综合考虑不同类型的空调用户对于价格的敏感程度,可将空调用户群体分为以下三种类型进行讨论:
[0103] 1)该类空调用户属于对价格不太敏感的类型,对室温环境的要求比较高,因此假设其室温允许范围是[23,25]℃。
[0104] 2)该类空调用户属于对价格敏感程度一般的类型,对室温环境的要求适中,因此假设其室温允许范围是[23,27]℃。
[0105] 3)该类空调用户属于对价格比较敏感的类型,对室温环境的要求比较低,因此假设其室温允许范围是[23,29]℃。
[0106] 利用近邻传播聚类算法对三类分体空调用户和中央空调用户进行聚类。聚类的结果为600台分体空调中三类用户的空调数目分别为192台、206台和202 台;600台中央空调中三类用户的空调数分别为196台、204台和200台。三个聚类中心坐标如表1所示。
[0107] 表1聚类中心的坐标数值
[0108]
[0109] 考虑温湿度指标,并认为室内湿度为40%时,第三类用户的室温允许范围从[23,29]℃进一步缩小为[23,26.1]℃,第二类用户的室温允许范围从[23, 27]℃缩小为[23,
26.1]℃,第一类用户的室温上下限范围没有受到影响。
[0110] 根据更新后的室温允许范围,由聚类的结果可以得到分体空调群和中央空调群可参与调度时长和可参与调度容量分别如表2和表3所示:
[0111] 表2三类分体空调用户的可参与调度时长和容量
[0112]
[0113] 表3三类中央空调用户的可参与调度时长和容量
[0114]
[0115] 以深圳某新区2018年夏季7月份某天为例,由于持续高温导致负荷峰值不断攀升,造成电力短缺,电力公司为保证电力系统安全稳定运行,根据辖区内电力负荷的历史数据预测得到次日24个时段的电力负荷值,通过对短期负荷预测结果的分析,制定次日早、晚高峰时期内10个时段的调度计划。每个时段的削峰容量和调度时长如表4所示:
[0116] 表4各时段削峰容量和调度时长
[0117]
[0118] 假设共有6个聚合商参与日前市场投标,负荷聚合商从预先聚合的全部空调负荷集群中筛选出满足该削峰时段调度时长的部分,并根据历史激励响应情况预估出投标容量,投标价格则参考江苏、山东等省发布的《电力需求响应的实施细则》中补贴标准,其具体投标信息如表5和表6所示。
[0119] 表5各负荷聚合商投标信息
[0120]
[0121] 表6负荷聚合商的违约率及信誉度值
[0122]
[0123] 电力公司综合考虑各聚合商的信誉度指数、报价和可参与调度时长等因素,在满足计划调节总电量的前提下,优化调度计划,达到各聚合商调度容量合理分配、电力公司削峰成本最小的目的。所有负荷聚合商在各削峰时段的中标情况如表7所示。
[0124] 表7负荷聚合商中标情况
[0125]
[0126] 结合表5中各负荷聚合商的投标价格、表6中各负荷聚合商的信誉度值和表7中各负荷聚合商的中标情况,以第1个削峰和第5个削峰时段为例,通过分析可以得到以下结论:在电力公司公开招标的第1个削峰时段,虽然负荷聚合商E的报价偏高,在6个负荷聚合商的价格竞争中处于劣势,但是在信誉度值方面,负荷聚合商E拥有很大的优势。因此,电力公司在衡量各负荷聚合商的性价比之后,最终选择能让自己削峰成本最低的负荷聚合商E。
[0127] 在电力公司公开招标的第5个削峰时段,虽然负荷聚合商A的报价最低,但是最高的违约率直接导致其信誉度值在各聚合商中居于末尾,若电力公司选择负荷聚合商A参与该时段的调峰,为了保证削峰计划能顺利完成,就需要较多的蓄电池作为备用以填补负荷聚合商A产生的违约电量。负荷聚合商F 虽然报价最高,但是其信誉度值也同样高居首位,因此所需储能装置的备用容量很小。电力公司通过对比A、F两个负荷聚合商投标方案的经济性,最终选择对自己更为有利的负荷聚合商F作为该削峰时段的需求侧资源供应商。
专利联系人(活跃度排行)
版权所有:盲专网 ©2023 zlpt.xyz  蜀ICP备2023003576号