首页 > 专利 > 浙江工业职业技术学院 > 全桥式力反馈弹性压扭联轴器型2D电液比例换向阀专利详情

全桥式力反馈弹性压扭联轴器型2D电液比例换向阀   0    0

有效专利 查看PDF
专利申请流程有哪些步骤?
专利申请流程图
申请
申请号:指国家知识产权局受理一件专利申请时给予该专利申请的一个标示号码。唯一性原则。
申请日:提出专利申请之日。
2016-01-25
申请公布
申请公布指发明专利申请经初步审查合格后,自申请日(或优先权日)起18个月期满时的公布或根据申请人的请求提前进行的公布。
申请公布号:专利申请过程中,在尚未取得专利授权之前,国家专利局《专利公报》公开专利时的编号。
申请公布日:申请公开的日期,即在专利公报上予以公开的日期。
2016-07-13
授权
授权指对发明专利申请经实质审查没有发现驳回理由,授予发明专利权;或对实用新型或外观设计专利申请经初步审查没有发现驳回理由,授予实用新型专利权或外观设计专利权。
2017-12-01
预估到期
发明专利权的期限为二十年,实用新型专利权期限为十年,外观设计专利权期限为十五年,均自申请日起计算。专利届满后法律终止保护。
2036-01-25
基本信息
有效性 有效专利 专利类型 发明专利
申请号 CN201610048974.6 申请日 2016-01-25
公开/公告号 CN105465084B 公开/公告日 2017-12-01
授权日 2017-12-01 预估到期日 2036-01-25
申请年 2016年 公开/公告年 2017年
缴费截止日
分类号 F15B13/02 主分类号 F15B13/02
是否联合申请 独立申请 文献类型号 B
独权数量 1 从权数量 2
权利要求数量 3 非专利引证数量 0
引用专利数量 1 被引证专利数量 0
非专利引证
引用专利 CN205298128U 被引证专利
专利权维持 5 专利申请国编码 CN
专利事件 转让 事务标签 公开、实质审查、授权、权利转移
申请人信息
申请人 第一申请人
专利权人 浙江工业职业技术学院 当前专利权人 江苏国谷输配电设备有限公司
发明人 沈姗姗、高奇峰、胡红钱、刘灿 第一发明人 沈姗姗
地址 浙江省绍兴市镜湖新区曲屯路151号 邮编 310015
申请人数量 1 发明人数量 4
申请人所在省 浙江省 申请人所在市 浙江省绍兴市
代理人信息
代理机构
专利代理机构是经省专利管理局审核,国家知识产权局批准设立,可以接受委托人的委托,在委托权限范围内以委托人的名义办理专利申请或其他专利事务的服务机构。
广东广和律师事务所 代理人
专利代理师是代理他人进行专利申请和办理其他专利事务,取得一定资格的人。
万鹏
摘要
本发明公开了一种全桥式力反馈弹性压扭联轴器型2D电液比例换向阀,包括换向阀、两个线性‑转动电机械转换器以及两个压扭联轴器;每个线性‑转动电机械转换器分别通过压扭联轴器与阀芯连接;压扭联轴器包括第一连接部、第二连接部、第一弹性螺旋件、第二弹性螺旋件,安装板以及反馈杆;第一连接部、第二连接部、第一弹性螺旋件、第二弹性螺旋件,安装板以及反馈杆为一体化结构。实施本发明的有益效果是:所述2D电液比例换向阀采用压扭联轴器的结构,当转子推动第二连接部朝向阀芯运动时,第一弹性螺旋件与第二弹性螺旋件产生相对扭转以带动第一连接部旋转运动,其具有无摩擦传递、柔性好,体积小且加工装配简便等优点。
  • 摘要附图
    全桥式力反馈弹性压扭联轴器型2D电液比例换向阀
  • 说明书附图:图1
    全桥式力反馈弹性压扭联轴器型2D电液比例换向阀
  • 说明书附图:图2
    全桥式力反馈弹性压扭联轴器型2D电液比例换向阀
  • 说明书附图:图3
    全桥式力反馈弹性压扭联轴器型2D电液比例换向阀
  • 说明书附图:图4
    全桥式力反馈弹性压扭联轴器型2D电液比例换向阀
  • 说明书附图:图5
    全桥式力反馈弹性压扭联轴器型2D电液比例换向阀
  • 说明书附图:图6
    全桥式力反馈弹性压扭联轴器型2D电液比例换向阀
法律状态
序号 法律状态公告日 法律状态 法律状态信息
1 2021-05-11 专利权的转移 登记生效日: 2021.04.29 专利权人由浙江工业职业技术学院变更为江苏国谷输配电设备有限公司 地址由310015 浙江省绍兴市镜湖新区曲屯路151号变更为221000 江苏省徐州市睢宁县王集镇苏塘街西王红线东侧
2 2017-12-01 授权
3 2016-07-13 实质审查的生效 IPC(主分类): F15B 13/02 专利申请号: 201610048974.6 申请日: 2016.01.25
4 2016-04-06 公开
权利要求
权利要求书是申请文件最核心的部分,是申请人向国家申请保护他的发明创造及划定保护范围的文件。
1.一种全桥式力反馈弹性压扭联轴器型2D电液比例换向阀,其特征在于:包括换向阀(1)、两个分别连接在所述换向阀(1)两端的线性-转动电机械转换器(2),以及两个压扭联轴器(3);所述换向阀(1)包括阀体(11),以及安装在所述阀体(11)内的阀芯(12);每个所述线性-转动电机械转换器(2)包括壳体(21),以及安装在所述壳体(21)内的转子(22);所述阀芯(12)左端台肩上开设有径向对称分布的两对左端高压孔(121)和两对左端低压孔(122),两对所述左端高压孔(121)与系统压力口P口相通,两对所述左端低压孔(122)与回油压力口T口相通;所述阀芯(12)右端开设有与两对左端高压孔(121)和两对左端低压孔(122)斜对称的两对右端高压孔(123)和两对右端低压孔(124);
所述阀体(11)内部开设有左感受通道(125)和右感受通道(126);所述2D电液比例换向阀处于平衡的初始位置时,所述左感受通道(125)与两对左端高压孔(121)和两对左端低压孔(122)形成第一交接面积,所述右感受通道(126)与两对所述右端高压孔(123)和两对右端低压孔(124)形成第二交接面积,所述第一交接面积与所述第二交接面积相同;
每个所述线性-转动电机械转换器(2)分别通过所述压扭联轴器(3)与所述阀芯(12)连接;每个所述压扭联轴器(3)包括与所述阀芯(12)固定连接的第一连接部(31)、与所述转子(22)固定连接的第二连接部(32)、连接在所述第一连接部(31)与所述第二连接部(32)之间的第一弹性螺旋件(33)与第二弹性螺旋件(34)、安装板(35),以及多个反馈杆(36);所述阀芯(12)、所述第一连接部(31)、所述第二连接部(32),以及所述转子(22)均同轴设置;所述第一连接部(31)、所述第二连接部(32)、所述第一弹性螺旋件(33)、所述第二弹性螺旋件(34)、所述安装板(35)以及所述反馈杆(36)为一体化结构;
所述第一连接部(31)与所述第二连接部(32)为外径相同的圆柱体;所述第一弹性螺旋件(33)与所述第二弹性螺旋件(34)的旋向相同,且所述第一弹性螺旋件(33)与所述第二弹性螺旋件(34)分别在所述第一连接部(31)的同一端面上的投影相互分离;所述安装板(35)包括固定安装在所述阀体(11)上的板体(351),以及开设在所述板体(351)中心的通孔(352);所述第一连接部(31)可在所述通孔(352)中伸缩运动;每个所述反馈杆(36)连接在所述第一连接部(31)的外壁与所述通孔(352)的内壁之间;多个所述反馈杆(36)均匀地分布在所述第一连接部(31)的外壁上;
所述反馈杆(36)为四个;四个所述反馈杆(36)呈十字形分布;
所述2D电液比例换向阀还包括套装在所述压扭联轴器(3)一端的外部的套筒(4);所述套筒(4)的一端与所述安装板(35)固定连接,所述套筒(4)的另一端与所述壳体(21)连接;
所述套筒(4)为方形的中空结构;
当所述转子(22)转动以带动所述第二连接部(32)转动时,所述第一弹性螺旋件(33)与所述第二弹性螺旋件(34)产生相对扭转以带动所述第一连接部(31)旋转运动。

2.根据权利要求1所述的全桥式力反馈弹性压扭联轴器型2D电液比例换向阀,其特征在于:所述板体(351)呈正方体。

3.根据权利要求1所述的全桥式力反馈弹性压扭联轴器型2D电液比例换向阀,其特征在于:所述线性-转动电机械转换器(2)为旋转比例电磁铁或步进电机。
说明书

技术领域

[0001] 本发明涉及电液比例控制系统领域,更具体地说,涉及一种全桥式力反馈弹性压扭联轴器型2D电液比例换向阀。

背景技术

[0002] 电液比例阀是采用比例控制技术,介于开关型液压阀和电液伺服阀之间的一种液压元件。由于电液比例阀能够与电子控制装置组合,因而便于对各种输入、输出信号进行运算处理,以实现复杂的控制功能。同时,电液比例阀具有抗污染、低成本且响应速度快等优点,在工业生产中获得了广泛的应用。
[0003] 现有的电液比例换向阀一般可采用直动式和导控型两种结构的设计方案。直动式电液比例换向阀由线性-转动电机械转换器直接驱动阀芯运动,其结构简单,且可以在零压力下工作,但由于受线性-转动电机械转换器输出推力的限制无法实现大流量控制。导控型电液比例换向阀由导阀控制主阀敏感腔的压力变化,产生较大的液压静压力驱动主阀芯运动,可以实现大流量控制,但其结构复杂,且无法在零导控压力下工作。

发明内容

[0004] 本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种高压大流量,且结构简单的全桥式力反馈弹性压扭联轴器型2D电液比例换向阀。
[0005] 本发明解决其技术问题所采用的技术方案是:构造了一种全桥式力反馈弹性压扭联轴器型2D电液比例换向阀,包括换向阀、两个分别连接在所述换向阀两端的线性-转动电机械转换器,以及两个压扭联轴器;所述换向阀包括阀体,以及安装在所述阀体内的阀芯;每个所述线性-转动电机械转换器包括壳体,以及安装在所述壳体内的转子;所述阀芯左端台肩上开设有径向对称分布的两对左端高压孔和两对左端低压孔,两对所述左端高压孔与系统压力口P口相通,两对所述左端低压孔与回油压力口T口相通;所述阀芯右端开设有与两对左端高压孔和两对左端低压孔斜对称的两对右端高压孔和两对右端低压孔;
[0006] 所述阀体内部开设有左感受通道和右感受通道;所述2D电液比例换向阀处于平衡的初始位置时,所述左感受通道与两对左端高压孔和两对左端低压孔形成第一交接面积,所述右感受通道与两对所述右端高压孔和两对右端低压孔形成第二交接面积,所述第一交接面积与所述第二交接面积相同;
[0007] 每个所述线性-转动电机械转换器分别通过所述压扭联轴器与所述阀芯连接;每个所述压扭联轴器包括与所述阀芯固定连接的第一连接部、与所述转子固定连接的第二连接部、连接在所述第一连接部与所述第二连接部之间的第一弹性螺旋件与第二弹性螺旋件、安装板,以及多个反馈杆;所述阀芯、所述第一连接部、所述第二连接部,以及所述转子均同轴设置;所述第一连接部、所述第二连接部、所述第一弹性螺旋件、所述第二弹性螺旋件、所述安装板以及所述反馈杆为一体化结构;
[0008] 所述第一连接部与所述第二连接部为外径相同的圆柱体;所述第一弹性螺旋件与所述第二弹性螺旋件的旋向相同,且所述第一弹性螺旋件与所述第二弹性螺旋件分别在所述第一连接部的同一端面上的投影相互分离;所述安装板包括固定安装在所述阀体上的板体,以及开设在所述板体中心的通孔;所述第一连接部可在所述通孔中伸缩运动;每个所述反馈杆连接在所述第一连接部的外壁与所述通孔的内壁之间;多个所述反馈杆均匀地分布在所述第一连接部的外壁上;
[0009] 当所述转子转动以带动所述第二连接部转动时,所述第一弹性螺旋件与所述第二弹性螺旋件产生相对扭转以带动所述第一连接部旋转运动。
[0010] 在本发明所述的全桥式力反馈弹性压扭联轴器型2D电液比例换向阀中,所述板体呈正方体。
[0011] 在本发明所述的全桥式力反馈弹性压扭联轴器型2D电液比例换向阀中,所述2D电液比例换向阀还包括套装在所述压扭联轴器一端的外部的套筒;所述套筒的一端与所述安装板固定连接,所述套筒的另一端与所述壳体连接。
[0012] 在本发明所述的全桥式力反馈弹性压扭联轴器型2D电液比例换向阀中,所述套筒为方形的中空结构。
[0013] 在本发明所述的全桥式力反馈弹性压扭联轴器型2D电液比例换向阀中,所述反馈杆为四个。
[0014] 实施本发明的全桥式力反馈弹性压扭联轴器型2D电液比例换向阀,具有以下有益效果:所述2D电液比例换向阀采用带反馈杆的压扭联轴器的结构,当线性-转动电机械转换器得电,转子的旋转运动使阀芯旋转,阀芯两端压差使阀芯移动,第一弹性螺旋件与第二弹性螺旋件产生轴向错位距离将产生一定的复位扭矩,且反馈杆也将产生一定的复位扭矩,共同使使第一连接部旋转回初始角度,重新达到平衡,采用带反馈杆的压扭联轴器具有无摩擦传递、柔性好,动态响应好、体积小且加工装配简便等优点。

实施方案

[0022] 为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。在本发明的描述中,需要理解的是,术语“第一”、“第二”、“左端”、“右端”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
[0023] 如图1、图2、图3、图4以及图5所示,本发明的较佳实施例提供一种全桥式力反馈弹性压扭联轴器型2D电液比例换向阀,其包括换向阀1、线性-转动电机械转换器2、压扭联轴器3以及套筒4。
[0024] 具体地,如图1、图2以及图3所示,该换向阀1包括阀体11,以及安装在阀体11内的阀芯12。该阀芯12左端台肩上开设有径向对称分布的两对左端高压孔121和两对左端低压孔122,两对左端高压孔121与系统压力口P口相通,两对左端低压孔122与回油压力口T口相通,A口和B口分别为工作油口。该阀芯12右端开设有与两对左端高压孔121和两对左端低压孔122斜对称的两对右端高压孔123和两对右端低压孔124。上述斜对称是指,如果两对左端高压孔121在阀芯12中轴线之上,那两对右端高压孔123就在阀芯12中轴线之下,同理,如果两对左端低压孔122在阀芯12中轴线之下,那两对右端低压孔124就在阀芯12中轴线之上。该阀体11内部开设有左感受通道125和右感受通道126,所述左感受通道125与阀芯11左端敏感腔相通,所述右感受通道126与阀芯11右端敏感腔相通。当2D电液比例换向阀处于平衡的初始位置时,左感受通道125与两对左端高压孔121和两对左端低压孔122形成第一交接面积,右感受通道126与两对右端高压孔123和两对右端低压孔124形成第二交接面积,第一交接面积与第二交接面积相同。
[0025] 该线性-转动电机械转换器2设置有两个,两个线性-转动电机械转换器2分别连接在换向阀1的两端。每个线性-转动电机械转换器2包括壳体21,以及安装在壳体21内的转子22。本实施例中,每个线性-转动电机械转换器2分别通过压扭联轴器3与阀芯12连接。该线性-转动电机械转换器2为旋转比例电磁铁或步进电机,其均为现有技术中常见的结构,在此不再赘述。
[0026] 如图3、图4、图5并参阅图1所示,该压扭联轴器3用于将线性-转动电机械转换器2中的转子22的转动变为换向阀1中的阀芯12的旋转运动。压扭联轴器3包括第一连接部31、第二连接部32、第一弹性螺旋件33、第二弹性螺旋件34、安装板35以及反馈杆36。第一连接部31、第二连接部32、第一弹性螺旋件33、第二弹性螺旋件34、安装板35以及反馈杆36为一体化结构,其整体性结构较好,组装拆卸所述2D电液比例换向阀时较为简便。该实施例中,阀芯12、第一连接部31、第二连接部32,以及转子22均同轴设置。
[0027] 其中,如图4、图5并参阅图1、图2所示,该第一连接部31与阀芯12固定连接,该第二连接部32与转子22固定连接,第一连接部31与第二连接部32为外径相同的圆柱体。该第一弹性螺旋件33与该第二弹性螺旋件34分别连接在第一连接部31与第二连接部32之间,也即第一弹性螺旋件33连接在第一连接部31与第二连接部32相邻的两端面,第二弹性螺旋件34同样连接在第一连接部31与第二连接部32相邻的两端面。本实施例中,第一弹性螺旋件33与第二弹性螺旋件34的旋向相同,且第一弹性螺旋件33与第二弹性螺旋件34分别在第一连接部31的同一端面上的投影相互分离,该投影为扇环形,两个投影呈轴对称设置。当转子22转动以带动第二连接部32转动时,第一弹性螺旋件33与第二弹性螺旋件34产生相对扭转以带动第一连接部31旋转运动。
[0028] 参阅图6所示,本实施例中,优选地,第一弹性螺旋件33与第二弹性螺旋件34为相同结构反向对称设置,其数学模型如下:
[0029] x=φ·r
[0030] l=ψ·r
[0031]
[0032]
[0033] 其中:
[0034] φ:第一弹性螺旋件或第二弹性螺旋件端面投影对应的圆心角;
[0035] r:第一弹性螺旋件或第二弹性螺旋件端面投影对应的半径;
[0036] ψ:第一弹性螺旋件或第二弹性螺旋件上任意一段螺旋体端面投影对应的圆心角;
[0037] x:圆心角φ对应的弧长;
[0038] l:圆心角ψ对应的弧长;
[0039] θ:第一弹性螺旋件、第二弹性螺旋件x处截面转过的角度;
[0040] w:第一弹性螺旋件、第二弹性螺旋件x处的挠度;
[0041] δ:第一弹性螺旋件与第二弹性螺旋件的错位距离。
[0042] 图6中,Δl为圆心角ψ对应的弧长的变化量。上述数学模型能较好的反应压扭联轴器3中的第一弹性螺旋件33与第二弹性螺旋件34展开之后的扰度变化情况,使第一弹性螺旋件33与第二弹性螺旋件34的变形能更加贴合设计要求,压扭放大的效果达到最佳。
[0043] 如图3、图4以及图5所示,该安装板35固定安装在阀体11上,以使得压扭联轴器3固定安装在换向阀1上。本实施例中,安装板35包括呈正方体的板体351,以及开设在板体351中心的通孔352,第一连接部31可在通孔352中伸缩运动。该反馈杆36大致为直杆状结构,其连接在第一连接部31的外壁与通孔352的内壁之间。本实施例中,反馈杆36设置有多个,多个反馈杆36均匀地分布在第一连接部31的外壁上。优选地,反馈杆36设置有四个,四个反馈杆36呈十字形分布。采用该反馈杆36的结构,当第一弹性螺旋件33与第二弹性螺旋件34产生轴向错位距离时,第一弹性螺旋件33与第二弹性螺旋件34将产生一定的复位扭矩,该反馈杆36也产生一定的复位扭矩,共同使得第一连接部31旋转回初始角度,以使得压扭联轴器3重新达到平衡状态。
[0044] 如图1所示,该套筒4套装压扭联轴器3的一端外部,套筒4的一端与安装板35固定连接,套筒4的另一端与壳体21连接。本实施例中,套筒4为方形的中空结构。采用该套筒4的结构,能够使得压扭联轴器3稳固地连接在换向阀1与线性-转动电机械转换器2之间。
[0045] 所述2D电液比例换向阀的具体工作原理:如图3所示,系统压力口P,工作油口A和B,及回油压力口T。当两边旋转电磁铁2都失电时,左感受通道125与两对左端高压孔121和两对左端低压孔122形成第一交接面积,右感受通道126与两对右端高压孔123和两对右端低压孔124形成第二交接面积,第一交接面积与第二交接面积相同,阀芯12左端所受压力为系统压力P的一半,同理,阀芯12右端所受压力也为系统压力P的一半,且阀芯12两端的面积相同,故阀芯12处于平衡。当换向阀1右端电磁铁2得电时,阀芯12将顺时针旋转(从右端电磁铁2面对阀体11的方向),此时左端感受通道125与左端高压孔121交接面积减少,与左端低压孔122交接面积增加,阀芯12左腔压力下降,同理,此时右端感受通道126与右端高压孔123交接面积增加,与右端低压孔124交接面积减少,阀芯12右腔压力升高。在左右两腔压力不平衡情况下,阀芯12将左移,随着阀芯12左移,在压扭联轴器3的作用下,阀芯12将重新逆时针旋转(从右端电磁铁2面对阀体11的方向)回初始平衡位置,完成电液比例控制。同理,换向阀1左端电磁铁2得电,阀芯12将右移,完成电液比例控制。与其它电液比例换向阀相比,压扭联轴器3的压扭转换过程不存在摩擦力和间隙,而且错位的距离或力放大倍数可以通过改变第一弹性螺旋件33与第二弹性螺旋件34的双螺旋结构参数加以调整。
[0046] 本实施例中,第一弹性螺旋件33与第二弹性螺旋件34之间的结构类似于DNA双螺旋结构,该双螺旋结构轴向错位距离、周向弧长和结构展开长度三者之间构成近似的直角三角形两个直角边与斜边之间的关系,显然,因螺旋结构的长度不变,当第二连接部32受转子22的推拉作用使第一连接部31与第二连接部32错位发生变化,则必然使第一弹性螺旋件33与第二弹性螺旋件34的弧线距离发生改变,即第一弹性螺旋件33与第二弹性螺旋件34发生相对扭转,从而带动第一连接部31旋转运动。且第一弹性螺旋件33与第二弹性螺旋件34径向旋转大,足以将转子22的旋转运动直接传递为阀芯12的旋转运动,同时反馈杆36可以储存扭矩,当电流减小时,具有力反馈作用。故,转子22的旋转运动先变为阀芯12的转动,在阀芯12左腔和右腔压力不平衡的情况下发生移动,然后在压扭联轴器3的作用下实现反方向转动至初始角度,阀芯12移动完成,达平衡位置,阀芯12位移量与旋转电磁铁2的角度成正比。与其它电液比例换向阀相比,压扭联轴器3的压扭转换过程不存在摩擦力和间隙,而且错位的距离或力放大倍数可以通过改变第一弹性螺旋件33与第二弹性螺旋件34的双螺旋结构参数加以调整。
[0047] 上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

附图说明

[0015] 下面将结合附图及实施例对本发明作进一步说明,附图中:
[0016] 图1是本发明较佳实施例提供的全桥式力反馈弹性压扭联轴器型2D电液比例换向阀的内部结构示意图;
[0017] 图2是图1中的A部放大图;
[0018] 图3是图1所示的2D电液比例换向阀中的两个压扭联轴器分别与阀芯、转子连接的结构图;
[0019] 图4是图1所示的2D电液比例换向阀中的压扭联轴器的结构图;
[0020] 图5是图1所示的2D电液比例换向阀中的压扭联轴器的局部结构图;
[0021] 图6是图1所示的2D电液比例换向阀中的压扭联轴器的第一弹性螺旋件与所述第二弹性螺旋件的扰度简图。
版权所有:盲专网 ©2023 zlpt.xyz  蜀ICP备2023003576号