首页 > 专利 > 杭州电子科技大学 > 一种非线性电力系统的自适应汽门控制方法专利详情

一种非线性电力系统的自适应汽门控制方法   0    0

有效专利 查看PDF
专利申请流程有哪些步骤?
专利申请流程图
申请
申请号:指国家知识产权局受理一件专利申请时给予该专利申请的一个标示号码。唯一性原则。
申请日:提出专利申请之日。
2021-05-28
申请公布
申请公布指发明专利申请经初步审查合格后,自申请日(或优先权日)起18个月期满时的公布或根据申请人的请求提前进行的公布。
申请公布号:专利申请过程中,在尚未取得专利授权之前,国家专利局《专利公报》公开专利时的编号。
申请公布日:申请公开的日期,即在专利公报上予以公开的日期。
2021-10-08
授权
授权指对发明专利申请经实质审查没有发现驳回理由,授予发明专利权;或对实用新型或外观设计专利申请经初步审查没有发现驳回理由,授予实用新型专利权或外观设计专利权。
2022-03-15
预估到期
发明专利权的期限为二十年,实用新型专利权期限为十年,外观设计专利权期限为十五年,均自申请日起计算。专利届满后法律终止保护。
2041-05-28
基本信息
有效性 有效专利 专利类型 发明专利
申请号 CN202110591571.7 申请日 2021-05-28
公开/公告号 CN113410851B 公开/公告日 2022-03-15
授权日 2022-03-15 预估到期日 2041-05-28
申请年 2021年 公开/公告年 2022年
缴费截止日
分类号 H02J3/24F01D17/10 主分类号 H02J3/24
是否联合申请 独立申请 文献类型号 B
独权数量 1 从权数量 1
权利要求数量 2 非专利引证数量 1
引用专利数量 0 被引证专利数量 0
非专利引证 1、CN 111431168 A,2020.07.17CN 104806302 A,2015.07.29CN 108729961 A,2018.11.02yiming shao.Event-Triggered Filter ofSwitched Positive Systems with StateSaturation《.2020 International Conferenceon Information, Cybernetics,andComputational Social Systems (ICCSS)》.2021,竺炜等.用于功角稳定控制的发电机动态模型分析《.中国电机工程学报》.2009,(第13期),余涛等.汽轮发电机组汽门开度和励磁系统的自抗扰综合控制《.电力系统自动化》.2003,(第03期),孙丽颖等.考虑输入约束的发电机汽门非线性自适应控制《.控制理论与应用》.2009,(第06期),;
引用专利 被引证专利
专利权维持 1 专利申请国编码 CN
专利事件 事务标签 公开、实质审查、授权
申请人信息
申请人 第一申请人
专利权人 杭州电子科技大学 当前专利权人 杭州电子科技大学
发明人 邵一鸣、贾祥磊、鞠昕旭 第一发明人 邵一鸣
地址 浙江省杭州市下沙高教园区2号大街 邮编 310018
申请人数量 1 发明人数量 3
申请人所在省 浙江省 申请人所在市 浙江省杭州市
代理人信息
代理机构
专利代理机构是经省专利管理局审核,国家知识产权局批准设立,可以接受委托人的委托,在委托权限范围内以委托人的名义办理专利申请或其他专利事务的服务机构。
杭州君度专利代理事务所 代理人
专利代理师是代理他人进行专利申请和办理其他专利事务,取得一定资格的人。
杨舟涛
摘要
本发明公开了一种非线性电力系统的自适应汽门控制方法,本发明针对一类带有主汽门控制器的单机无穷大系统,在考虑系统部分信息未知且输出传感器存在扰动情况,基于事件触发机制设计一种自适应控制器,该控制器通过调节汽门开度大小,控制发电机功角按照预期要求动作,实现功角的实际跟踪控制。本专利不仅考虑了发电机转子受到的干扰,而且考虑了发电机功角受到的随发电机角速度变化的干扰,这两种干扰的上下界都是未知的;本发明考虑的电力系统干扰更复杂,因此本专利设计的控制系统具有更强的鲁棒性;本发明在控制器中引入事件触发机制,可以有效避免电力系统控制网络中冗余信号的传输,避免因网络带宽不足降低系统稳定性。
  • 摘要附图
    一种非线性电力系统的自适应汽门控制方法
  • 说明书附图:图1
    一种非线性电力系统的自适应汽门控制方法
  • 说明书附图:图2
    一种非线性电力系统的自适应汽门控制方法
  • 说明书附图:图3
    一种非线性电力系统的自适应汽门控制方法
  • 说明书附图:图4
    一种非线性电力系统的自适应汽门控制方法
  • 说明书附图:图5
    一种非线性电力系统的自适应汽门控制方法
  • 说明书附图:图6
    一种非线性电力系统的自适应汽门控制方法
法律状态
序号 法律状态公告日 法律状态 法律状态信息
1 2022-03-15 授权
2 2021-10-08 实质审查的生效 IPC(主分类): H02J 3/24 专利申请号: 202110591571.7 申请日: 2021.05.28
3 2021-09-17 公开
权利要求
权利要求书是申请文件最核心的部分,是申请人向国家申请保护他的发明创造及划定保护范围的文件。
1.一种非线性电力系统的自适应汽门控制方法,其特征在于,该方法具体包括以下步骤:
步骤1、根据带有主汽门控制器的单机无穷大系统建立电力系统的物理模型;
首先,假设只考虑高压主汽门调节控制,建立电力系统的物理模型:
其中δ代表发电机功角,ω代表发电机转子角速度,Pm0代表汽轮机初始机械功率,PH代表高压缸机械功率,TH代表高压缸等效汽门控制时间常数,D和H分别代表发电机阻尼系数和转动惯量,CH和CML分别代表高、低压缸功率分配系数;Eq代表发电机q轴暂态电势,Vs代表系统母线电压,u代表汽门等效控制量;d1(t)代表发电机气隙不均匀对发电机功角产生的扰动,d1(t)正定有界但上下界未知,d2(t)代表发电机转子受到的扰动,d2(t)有界但上下界未知,ω0为发电机转子初始运行角速度,Xd表示发电机暂态电抗;在上述系统中,只需要功角δ是可测的,通过主汽门控制量u控制系统功角δ到达期望领域(yr‑λ,yr+λ)里,yr代表功角跟踪的位置函数,λ代表功角最大允许跟踪误差;
定义x1=δ,x2=ω‑ω0,x3=PH‑CHPm0,公式(1)转化为如下模型:
其中 k4=k1Pm0、 皆是未知常数;
yr是功角预期到达的位置,yr是时变的,e是功角跟踪误差;
通过引入一组状态变换: 公式(2)表示成:
其中 g(t)=d1(t)
k1k5;
步骤2、根据系统电力系统的物理模型设计控制器;具体如下:
由于发电机功角是可测的,所以公式(3)中只有功角跟踪误差e是已知的;下面将只利用系统输入信息来设计观测器重构系统状态,同时构造合适的自适应增益L,用于补偿系统不确定性带来的影响;
式中, 是状态重构器的状态值,L是自适应增益,q是可设计的常数且满足
λ是可设计的常数,表示最大允许功角调节误差,ai>0,i=1,2,3是赫尔维兹多
3 2
项式p(s)=s+a1s+a2s+a3的系数;
下面给出控制器具体结构:
其中n是可设计的常数,代表控制器触发阈值;
v(t)的定义如下:
步骤3、选择控制器具体参数;
对于公式(2),假设发电机某个稳定工作点功角为δs,发电机转子角速度为ωs,汽轮机功率为Pms,控制目标是当发电机功角偏离稳态点且其它状态稳定时,控制发电机功角到达稳态点附近,误差不大于λ,并使其它状态保持稳定;选择一组赫尔维兹多项式系数a1,a2,a3,在区间 内选择一个常数q,根据控制网络带宽要求选择常数n,即确定控制器参数a1,a2,a3,q,λ,n;令功角参照信号yr≡δs,实现发电机的功角稳定控制。

2.根据权利要求1所述的一种非线性电力系统的自适应汽门控制方法,其特征在于:还包括控制效果的分析;具体为:
首先引入如下状态变换:
并构造一组虚拟控制器 和∈i,i=1,2,3如下:
其中k1=1,k2=3k1+1,k3=3(k1+k2)+1;
T
构造李雅普诺夫函数 其中ε=[ε1,ε2,ε3] ;对其求导得:
其中bi,i=1,...,6是未知正常数;
由式(9)推出L、和z是有界的;由z的定义推出e,x2和x3是有界的,说明发电机功角yr被调节至跟踪信号附近,频率ω和功率Pm保持在初始工作点附近;由(4)中L的定义推出且L(t)是一致连续的;因此,由 引理得:
由式(4)进一步得到:
式(11)说明了在一段时间后功角调节误差e会永远保持在区间[‑λ,λ]内,即系统稳定。
说明书

技术领域

[0001] 本发明应用于非线性电力系统的自适应控制,特别地涉及一种基于事件触发机制的非线性电力系统的汽门控制方法。

背景技术

[0002] 稳定的电力供应是保证社会正常运行与发展必不可少的一环,相关领域的专家、学者对如何保证电力系统稳定一直给予很大重视。随着我国用电需求的快速增加,用于发电、输电和配电的电力系统的规模变得越来越大、结构变得越来越复杂,其稳定运行也经历着更严峻的考验。因此,改进现有的控制方法、设计更先进的控制系统来提高电力系统运行的稳定裕度是非常有必要的。
[0003] 电力系统中用于保证系统稳定的控制措施主要有汽门/水门开度控制、发电机励磁控制和FACTS控制等。汽门/水门控制原理是:当电力系统出现扰动,发电机组的功角和频率不能保持在预期范围内时,通过调节汽门/水门开度控制原动机的输出力矩,从而控制发电机的电磁转矩,使发电机按照预期状态运行。其中汽门控制与水门控制原理类似,但是由于水门控制存在水击干扰,所以汽门控制效果更为优越,本专利主要介绍一种汽门控制方法。
[0004] 电力系统的稳定控制发展与控制科学的发展密切相关,我国最早在1984年就将最优励磁控制方法应用到甘肃碧口水电站发电机组中,随后各种先进控制方法开始在实际电力系统中得到广泛应用。在控制领域中,线性系统理论已经形成较为完整的体系,但由于实际电力系统越来越复杂、控制要求越来越高,很多电力系统不适合建模成线性系统进行处理。另一方面,由于非线性系统的复杂性和多样性,无法形成完整理论体系,因此需要针对不同种类系统设计不同控制方法。此外,自适应控制作为一种控制方法,通过“以变应变”的思路广泛应用于非线性控制中,使系统在具有一定不可预测的动态特性下,仍能保持良好的性能。考虑到传感器技术和经济条件的约束,电力系统某些信息不容易获得,因此自适应方法可以有效地运用到电力系统中。
[0005] 在实际的电力控制系统中,控制器、传感器和执行机构等元件都是以节点形式存在并通过控制网络进行数据传输与交换。当传输数据过于庞大时,可能造成网络带宽不足从而影响系统的稳定性。基于事件触发机制的控制器以事件触发点作为采样点,能够有效避免冗余信号的传输,节省网络带宽,具有良好的应用价值。
[0006] 功角稳定是电力系统稳定的重要一环,它意味着发电机保持稳定电角速度,本专利主要考虑电力系统功角失稳情况,实现功角跟踪控制,并使电力系统频率、原动机功率维持在初始工作点附近。
[0007] 本发明针对一类可获得信息较少的电力系统,同时考虑存在复杂不确定扰动的情况,基于事件触发机制设计一种自适应控制器,该控制器通过调节汽门开度,实现电力系统功角的控制。

发明内容

[0008] 本发明针对一类带有主汽门控制器的单机无穷大系统,在考虑系统部分信息未知且输出传感器存在扰动情况,基于事件触发机制设计一种自适应控制器,该控制器通过调节汽门开度大小,控制发电机功角按照预期要求动作,实现功角的跟踪控制。
[0009] 本发明一种非线性电力系统的自适应汽门控制方法,该方法包括以下步骤:
[0010] 步骤1、根据带有主汽门控制器的单机无穷大系统建立电力系统的物理模型;
[0011] 首先,假设只考虑高压主汽门调节控制,建立电力系统的物理模型:
[0012]
[0013] 其中δ代表发电机功角,ω代表发电机转子角速度,Pm0代表汽轮机初始机械功率,PH代表高压缸机械功率,TH代表高压缸等效汽门控制时间常数,D和H分别代表发电机阻尼系数和转动惯量,CH和CML分别代表高、低压缸功率分配系数;Eq代表发电机q轴暂态电势,Vs代表系统母线电压,u代表汽门等效控制量;d1(t)代表发电机气隙不均匀对发电机功角产生的扰动,d1(t)正定有界但上下界未知,d2(t)代表发电机转子受到的扰动,d2(t)有界但上下界未知,ω0为发电机转子初始运行角速度,Xd表示发电机暂态电抗;在上述系统中,只需要功角δ是可测的,通过主汽门控制量u控制系统功角δ到达期望领域(yr‑λ,yr+λ)里,yr代表功角跟踪的位置函数,λ代表功角最大允许跟踪误差;
[0014] 定义x1=δ,x2=ω‑ω0,x3=PH‑CHPm0,公式(1)转化为如下模型:
[0015]
[0016] 其中 皆是未知常数;yr是功角预期到达的位置,yr是时变的,e是功角跟踪误差;
[0017] 通过引入一组状态变换: 公式(2)表示成:
[0018]
[0019] 其中
[0020] 步骤2、根据系统电力系统的物理模型设计控制器;具体如下:
[0021] 由于发电机只有功角是可测的,所以公式(3)中只有功角跟踪误差e是已知的;下面将只利用系统输入信息来设计观测器重构系统状态,同时构造合适的自适应增益L,用于补偿系统不确定性带来的影响;
[0022]
[0023] 式中, 是状态重构器的状态值,L是自适应增益,q是可设计的常数且满足 λ是可设计的常数,表示最大允许功角调节误差,ai>0,i=1,2,3是赫尔维3 2
兹多项式p(s)=s+a1s+a2s+a3的系数;
[0024] 下面给出控制器具体结构:
[0025]
[0026] 其中n是可设计的常数,代表控制器触发阈值;
[0027] v(t)的定义如下:
[0028]
[0029] 步骤3、选择控制器具体参数;
[0030] 对于公式(2),假设发电机某个稳定工作点功角为δs,发电机转子角速度为ωs,汽轮机功率为Pms,控制目标是当发电机功角偏离稳态点且其它状态稳定时,控制发电机功角到达稳态点附近,误差不大于λ,并使其它状态保持稳定;选择一组赫尔维兹多项式系数a1,a2,a3,在区间 内选择一个常数q,根据控制网络带宽要求选择常数n,即确定控制器参数a1,a2,a3,q,λ,n;令功角参照信号yr≡δs,实现发电机的功角稳定控制。
[0031] 作为优选,还包括控制效果的分析;具体为:
[0032] 首先引入如下状态变换:
[0033]
[0034] 并构造一组虚拟控制器 和∈i,i=1,2,3如下:
[0035]
[0036] 其中k1=1,k2=3k1+1,k3=3(k1+k2)+1;T
[0037] 构造李雅普诺夫函数 其中ε=[ε1,ε2,ε3] ;对其求导得:
[0038]
[0039] 其中bi,i=1,...,6是未知常数;
[0040] 由式(9)推出L、和z是有界的;由z的定义推出e,x2和x3是有界的,说明发电机功角yr被调节至跟踪信号附近,频率ω和功率Pm保持在初始工作点附近;由(4)中L的定义推出且L(t)是一致连续的;因此,由 引理得:
[0041]
[0042] 由式(4)进一步得到:
[0043]
[0044] 式(11)说明了在一段时间后功角调节误差e会永远保持在区间[‑λ,λ]内,即实现系统实际跟踪控制。
[0045] 通过上述步骤可以实现电力系统的功角跟踪控制,并使系统发电机转子频率和原动机功率保持在初始状态。
[0046] 本发明相对于现有技术具有的效果:
[0047] 1:在实际工程中,由于传感器技术的限制和成本的限制,实际系统的某些信息不易获得。相比与现有的成果,本发明设计的控制器需要利用的系统信息更少,因此在实际工程中更有优势。
[0048] 2:本专利不仅考虑了发电机转子受到的干扰,而且考虑了发电机功角受到的随发电机角速度变化的干扰,这两种干扰的上下界都是未知的。相比于现有成果,本发明考虑的电力系统干扰更复杂,因此本专利设计的控制系统具有更强的鲁棒性。
[0049] 3:本发明在控制器中引入事件触发机制,可以有效避免电力系统控制网络中冗余信号的传输,避免因网络带宽不足降低系统稳定性。

实施方案

[0056] 步骤1:针对于图1中带有主汽门控制器的单机无穷大系统,建立数学模型。
[0057] 首先,假设只考虑高压主汽门调节控制,建立电力系统的物理模型:
[0058]
[0059] 其中δ代表发电机功角,ω代表发电机转子角速度,Pm0代表汽轮机初始机械功率,PH代表高压缸机械功率,TH代表高压缸等效汽门控制时间常数,D和H分别代表发电机阻尼系数和转动惯量,CH和CML分别代表高、低压缸功率分配系数;Eq代表发电机q轴暂态电势,Vs代表系统母线电压,u代表汽门等效控制量;d1(t)代表发电机气隙不均匀等原因对发电机功角产生的扰动,d1(t)正定有界但上下界未知,d2(t)代表发电机转子受到的扰动,d2(t)有界但上下界未知,ω0为发电机转子初始运行角速度,Xd表示发电机暂态电抗;。在上述系统中,只需要功角δ是可测的,对应图1中反馈信号只有功角信息,就可以通过主汽门控制量u控制系统功角δ到达期望领域(yr‑λ,yr+λ)里,yr代表功角跟踪的位置函数,λ代表功角最大允许跟踪误差。
[0060] 定义x1=δ,x2=ω‑ω0,x3=PH‑CHPm0,系统(1)可以转化为如下模型:
[0061]
[0062] 其中 是未知常数。yr是功角预期到达的位置,yr可以是时变的,e是功角跟踪误差。
[0063] 通过引入一组状态变换: 系统(2)可以表示成:
[0064]
[0065] 其中
[0066] 步骤2:控制器设计。
[0067] 由于实际系统中只有发电机功角是可测的,所以系统(3)中只有e是未知的。下面将只利用系统输入信息来设计观测器重构系统状态,同时构造合适的自适应增益L,用于补偿系统不确定性带来的影响。
[0068]
[0069] 式中, 是状态重构器的状态值,L是自适应增益,q是可设计的常数且满足 λ是可设计的常数,表示最大允许功角调节误差,ai>0,i=1,2,3是赫尔维3 2
兹多项式p(s)=s+a1s+a2s+a3的系数。
[0070] 下面给出控制器具体结构:
[0071]
[0072] 其中n是可设计的常数,代表控制器触发阈值。
[0073] v的定义如下:
[0074]
[0075] 步骤3:控制效果的理论分析。
[0076] 首先引入如下状态变换:
[0077]
[0078] 并构造一组虚拟控制器 和∈i,i=1,2,3如下:
[0079]
[0080] 其中k1=1,k2=3k1+1,k3=3(k1+k2)+1。
[0081] 构造李雅普诺夫函数 其中ε=[ε1,ε2,ε3]T。对其求导得:
[0082]
[0083] 其中bi,i=1,...,6是未知常数。
[0084] 由式(9)很容易可以推出L、和z是有界的。由z的定义推出e,x2和x3是有界的,说明发电机功角yr被调节至跟踪信号附近,频率ω和功率Pm保持在初始工作点附近。由(4)中L的定义可以推出 且L(t)是一致连续的。因此,由 引理得:
[0085]
[0086] 由(4)可以进一步得到:
[0087]
[0088] 式(11)说明了在一段时间后功角调节误差e会永远保持在区间[‑λ,λ]内。
[0089] 步骤4:确定控制器参数。
[0090] 对于系统(2),假设发电机某个稳定工作点(δs,ωs,Pms)=(60,314,0.8),令功角参照信号yr≡δs即可实现发电机的功角稳定控制。选择一组合适的赫尔维兹多项式系数a1=8,a2=4,a2=1。假设最大允许跟踪误差λ=0.1,选择常数q=0.01,选择控制器触发阈值n=0.026。实际控制器如下:
[0091]
[0092] 其中
[0093]
[0094] 在给出仿真结果之前,先给出仿真对象的具体参数标幺值:D=6,H=314,Eq=1,Vs=1,TH=0.4,CH=0.4,CML=0.6,Xd=1,d1(t)≡1.1,d2(t)=0.5sint。需要说明的是,在设计控制器时未用到以上参数和扰动信息。同时假设电力系统功角初始运行状态偏离稳态工作点,值为(δ0,ω0,Pm0)=(62,314,0.8)。
[0095] 图2表示电力系统功角一段时间被调节至预期工作点,而且调节误差保持在最大允许误差以内;图3和图4表示电力系统发电机频率和原动机功率保持在初始工作点附近;图5表示自适应增益是单调非减函数,并且在一段时间过后不再增长;图6表示只有当控制器达到触发阈值时才会更新控制信号,实现了事件触发控制。

附图说明

[0050] 图1是电力系统模型;
[0051] 图2是发电机功角的轨迹图;
[0052] 图3是发电机频率的轨迹图;
[0053] 图4是汽轮机功率的轨迹图;
[0054] 图5是自适应增益L的轨迹图;
[0055] 图6是控制器u的状态轨迹图。
版权所有:盲专网 ©2023 zlpt.xyz  蜀ICP备2023003576号