首页 > 专利 > 重庆科技学院 > 纳米链太阳能电池的制备方法专利详情

纳米链太阳能电池的制备方法   0    0

有效专利 查看PDF
专利申请流程有哪些步骤?
专利申请流程图
申请
申请号:指国家知识产权局受理一件专利申请时给予该专利申请的一个标示号码。唯一性原则。
申请日:提出专利申请之日。
2015-08-21
申请公布
申请公布指发明专利申请经初步审查合格后,自申请日(或优先权日)起18个月期满时的公布或根据申请人的请求提前进行的公布。
申请公布号:专利申请过程中,在尚未取得专利授权之前,国家专利局《专利公报》公开专利时的编号。
申请公布日:申请公开的日期,即在专利公报上予以公开的日期。
2016-01-27
授权
授权指对发明专利申请经实质审查没有发现驳回理由,授予发明专利权;或对实用新型或外观设计专利申请经初步审查没有发现驳回理由,授予实用新型专利权或外观设计专利权。
2017-12-01
预估到期
发明专利权的期限为二十年,实用新型专利权期限为十年,外观设计专利权期限为十五年,均自申请日起计算。专利届满后法律终止保护。
2035-08-21
基本信息
有效性 有效专利 专利类型 发明专利
申请号 CN201510518822.3 申请日 2015-08-21
公开/公告号 CN105206706B 公开/公告日 2017-12-01
授权日 2017-12-01 预估到期日 2035-08-21
申请年 2015年 公开/公告年 2017年
缴费截止日
分类号 H01L31/18H01L31/0224 主分类号 H01L31/18
是否联合申请 独立申请 文献类型号 B
独权数量 1 从权数量 9
权利要求数量 10 非专利引证数量 0
引用专利数量 0 被引证专利数量 0
非专利引证
引用专利 被引证专利
专利权维持 5 专利申请国编码 CN
专利事件 转让 事务标签 公开、实质审查、授权、权利转移
申请人信息
申请人 第一申请人
专利权人 重庆科技学院 当前专利权人 嘉兴鼎尚信息科技有限公司
发明人 高荣礼、符春林、蔡苇、陈刚、邓小玲 第一发明人 高荣礼
地址 重庆市沙坪坝区虎溪大学城重庆科技学院 邮编 401331
申请人数量 1 发明人数量 5
申请人所在省 重庆市 申请人所在市 重庆市沙坪坝区
代理人信息
代理机构
专利代理机构是经省专利管理局审核,国家知识产权局批准设立,可以接受委托人的委托,在委托权限范围内以委托人的名义办理专利申请或其他专利事务的服务机构。
重庆蕴博君晟知识产权代理事务所 代理人
专利代理师是代理他人进行专利申请和办理其他专利事务,取得一定资格的人。
王玉芝
摘要
本发明公开了一种具有特定取向的纳米链太阳能电池的制备方法。该方法按以下步骤进行:步骤1)制备电极,取基片、围壁,围壁包括侧壁、顶壁,在基片的上端面制备下电极,在顶壁的下表面制备上电极;步骤2)制备容器,将围壁固定在基片上,得到容器;步骤3)制备磁电性液体,取磁‑电核壳结构纳米微粒、亲油性表面活性剂、油性基液,将核壳结构纳米微粒、亲油性表面活性剂、油性基液均匀混合,得到磁电性液体,将磁电性液体加入容器中;步骤4)制备纳米链太阳能电池,对容器施加磁场,得到铁电纳米链,施加磁场的同时烘烤容器,烘干油性基液、亲油性表面活性剂之后煅烧容器,燃烧/分解掉容器的围壁后,得到纳米链太阳能电池。
  • 摘要附图
    纳米链太阳能电池的制备方法
  • 说明书附图:图1
    纳米链太阳能电池的制备方法
  • 说明书附图:图2
    纳米链太阳能电池的制备方法
  • 说明书附图:图3
    纳米链太阳能电池的制备方法
  • 说明书附图:图4
    纳米链太阳能电池的制备方法
  • 说明书附图:图5
    纳米链太阳能电池的制备方法
  • 说明书附图:图6
    纳米链太阳能电池的制备方法
法律状态
序号 法律状态公告日 法律状态 法律状态信息
1 2021-01-01 专利权的转移 登记生效日: 2020.12.21 专利权人由重庆科技学院变更为嘉兴鼎尚信息科技有限公司 地址由401331 重庆市沙坪坝区虎溪大学城重庆科技学院变更为314500 浙江省嘉兴市桐乡市崇福镇杭福路308号
2 2017-12-01 授权
3 2016-01-27 实质审查的生效 IPC(主分类): H01L 31/18 专利申请号: 201510518822.3 申请日: 2015.08.21
4 2015-12-30 公开
权利要求
权利要求书是申请文件最核心的部分,是申请人向国家申请保护他的发明创造及划定保护范围的文件。
1.一种纳米链太阳能电池的制备方法,其特征在于,该方法按以下步骤进行:
步骤1)制备电极
取耐高温材料制成的基片,以及用于覆盖基片的围壁,围壁的材料采用有机薄片,所述围壁包括侧壁、顶壁,所述围壁的燃烧/分解温度低于铁电材料的燃烧/分解温度,在基片的上端面制备下电极,在顶壁的下表面制备上电极;
步骤2)制备容器
将围壁固定在基片上,得到密封结构的容器;
步骤3)制备磁电性液体
取核壳结构纳米微粒、亲油性表面活性剂、油性基液,所述核壳结构纳米微粒的核心为磁性微粒,核壳结构纳米微粒的包壳为铁电性微粒,将核壳结构纳米微粒、亲油性表面活性剂、油性基液均匀混合,得到磁电性液体,将磁电性液体加入容器中;
步骤4)制备纳米链太阳能电池
对容器施加磁场,得到沿着磁场方向的铁电纳米链,施加磁场的同时烘烤容器,烘干油性基液、亲油性表面活性剂之后煅烧容器,至少燃烧/分解掉容器的围壁顶壁后,得到纳米链太阳能电池。

2.根据权利要求1所述的纳米链太阳能电池的制备方法,其特征在于,所述容器的厚度既小于容器长度的1/5,又小于容器宽度的1/5,形成片状结构的容器。

3.根据权利要求1所述的纳米链太阳能电池的制备方法,其特征在于,所述围壁的材料采用塑料。

4.根据权利要求1所述的纳米链太阳能电池的制备方法,其特征在于,步骤2)中,所述围壁粘接固定在基片上。

5.根据权利要求1所述的纳米链太阳能电池的制备方法,其特征在于,步骤3)中,所述油性基液为硅油、十二烷基苯、聚丁烯油中的至少一种。

6.根据权利要求1所述的纳米链太阳能电池的制备方法,其特征在于,步骤3)中,所述亲油性表面活性剂为油酸。

7.根据权利要求1所述的纳米链太阳能电池的制备方法,其特征在于,步骤3)中,核壳结构纳米微粒、亲油性表面活性剂、油性基液的混合方法为:首先,将核壳结构纳米微粒与亲油性表面活性剂均匀混合,然后,将核壳结构纳米微粒、亲油性表面活性剂的混合物加入油性基液中,然后,将核壳结构纳米微粒、亲油性表面活性剂、油性基液的混合物装进密封瓶内,最后,将密封瓶放在摇床上进行摇动,使核壳结构纳米微粒均匀的分散到油性基液中。

8.根据权利要求1所述的纳米链太阳能电池的制备方法,其特征在于,步骤3)中,所述磁电性液体用注射器注入容器中。

9.根据权利要求1所述的纳米链太阳能电池的制备方法,其特征在于,步骤4)中,沿竖直方向施加磁场,得到竖直方向的铁电纳米链。

10.根据权利要求1所述的纳米链太阳能电池的制备方法,其特征在于,步骤4)中,烘干油性基液、亲油性表面活性剂之后去掉磁场,然后煅烧容器。
说明书

技术领域

[0001] 本发明涉及太阳能电池技术领域,特别是涉及一种纳米链太阳能电池的制备方法。

背景技术

[0002] 能源危机是当前世界各国面临的重大难题,开发可再生能源是缓解该问题的有效途径。在众多可再生能源中,太阳能因其具有资源丰富、分布广泛、清洁干净等优点而备受青睐。光伏发电是开发太阳能的一种主要形式,其原理是利用光生伏特效应制成光伏电池,将太阳的光能转换成电能。光伏电池主要分为硅、铜铟硒、砷化镓、碲化镉以及聚合物光伏电池等。现有工业生产的薄膜太阳能电池存在转换效率低、稳定性差、生产成本比较高等缺点。要想改变以上缺点,可以通过提高薄膜的制备工艺和技术参数,或者提高光的利用效率。第一种方法面临研发周期长、成本高、技术困难等问题,因此,提高光的利用效率是提高转换效率的重要手段,显得十分必要。要想提高太阳光的利用率,可以通过提高薄膜对太阳光的吸收率,而增加薄膜的厚度可以做到这点。但是,薄膜厚度越厚,势必会降低太阳能电池的稳定性,同时也会增加光生载流子的复合率,降低转换效率。由于纳米线(纳米链)具有一系列薄膜所不具备的性质,例如其具有对光高的吸收率、低的复合率,此外在纳米线(纳米链)的一端具有较强的电场(类似于针尖附近的电场),因此对光生载流子具有较高的搜集效率。因此制备出高质量的、具备特定的织构、较低的缺陷、较高的纯度(高的主相比例)的纳米线(纳米链)是提高太阳能电池光电转换效率的有效手段。因此,如何制备出具有特定织构、高纯度的太阳能电池纳米线(纳米链)就显得十分必要。
[0003] 目前纳米线及其制备方法的不足之处:
[0004] 目前制备纳米线的方法主要包水热法,电化学法,溶胶-凝胶法,直接沉淀法,气相沉积法。不管哪种方法,都很难获得具有特定取向的纳米线,而且制备过程比较复杂。

发明内容

[0005] 本发明的目的在于克服现有技术的不足,提供一种具有特定取向的纳米链太阳能电池的制备方法。
[0006] 本发明的目的是这样实现的
[0007] 一种纳米链太阳能电池的制备方法,该方法按以下步骤进行:
[0008] 步骤1)制备电极
[0009] 取耐高温材料制成的基片,以及用于覆盖基片的围壁,所述围壁包括侧壁、顶壁,所述围壁的燃烧/分解温度低于铁电材料的燃烧/分解温度,在基片的上端面制备下电极,在顶壁的下表面制备上电极;
[0010] 步骤2)制备容器
[0011] 将围壁固定在基片上,得到密封结构的容器;
[0012] 步骤3)制备磁电性液体
[0013] 取核壳结构纳米微粒、亲油性表面活性剂、油性基液,所述核壳结构纳米微粒的核心为磁性微粒,核壳结构纳米微粒的包壳为铁电性微粒,将核壳结构纳米微粒、亲油性表面活性剂、油性基液均匀混合,得到磁电性液体,将磁电性液体加入容器中;
[0014] 步骤4)制备纳米链太阳能电池
[0015] 对容器施加磁场,得到沿着磁场方向的铁电纳米链,施加磁场的同时烘烤容器,烘干油性基液、亲油性表面活性剂之后煅烧容器,至少燃烧/分解掉容器的围壁顶壁后,得到纳米链太阳能电池。
[0016] 为了在光照时能够得到较大的光电流,优选地,所述容器的厚度既小于容器长度的1/5,又小于容器宽度的1/5,形成片状结构的容器。
[0017] 为了在较低的温度下燃烧掉围壁,优选地,所述围壁的材料采用塑料。
[0018] 为了便利地将围壁固定在基片上,优选地,步骤2)中,所述围壁粘接固定在基片上。
[0019] 为了保证基液在烘烤时不会燃烧,优选地,步骤3)中,所述油性基液为硅油、十二烷基苯、聚丁烯油中的至少一种。
[0020] 为了保证表面活性剂的亲油性能,优选地,步骤3)中,所述亲油性表面活性剂为油酸。
[0021] 为了将核壳结构纳米微粒、亲油性表面活性剂、油性基液均匀混合,优选地,步骤3)中,核壳结构纳米微粒、亲油性表面活性剂、油性基液的混合方法为:首先,将核壳结构纳米微粒与亲油性表面活性剂均匀混合,然后,将核壳结构纳米微粒、亲油性表面活性剂的混合物加入油性基液中,然后,将核壳结构纳米微粒、亲油性表面活性剂、油性基液的混合物装进密封瓶内,最后,将密封瓶放在摇床上进行摇动,使核壳结构纳米微粒均匀的分散到油性基液中。
[0022] 为了将磁电性液体加入容器中,优选地,步骤3)中,所述磁电性液体用注射器注入容器中。
[0023] 为了得到竖直方向的铁电纳米链,优选地,步骤4)中,沿竖直方向施加磁场,得到竖直方向的铁电纳米链。
[0024] 为了方便烧蚀掉围壁,优选地,步骤4)中,烘干油性基液、亲油性表面活性剂之后去掉磁场,然后煅烧容器。
[0025] 由于采用了上述技术方案,本发明具有如下有益效果:
[0026] 1、制备方法简单,只需要将具有铁电性的微粒分散在一定的基液里面,形成铁电性液体。对铁电液体施加磁场使得铁电微粒形成链状。
[0027] 2、在磁场作用下,具有铁电性的微粒能够发生转动,而且由于在液体中,所以磁场会比较小,由于布朗运动,在磁场下的转向更容易。在固体中需要施加相对较大的电场才能让改变极化方向,电场太大容易造成样品被击穿。
[0028] 3、通过改变磁场的大小、方向、梯度大小,就可以很容易的调控铁电纳米链的长短粗细。
[0029] 4、磁场是非接触的场,具有远程控制的能力,可以使得仪器小型化。集成化。不需要电源,节省能量。

实施方案

[0037] 实施例
[0038] 步骤1)制备电极
[0039] 以脉冲激光沉积法为例,也可以是其它方法,例如磁控溅射、溶胶-凝胶法等。以La0.7Sr0.3MnO3作为下电极为例,也可以采用其它材料,例如导电氧化物ITO,La0.5Sr0.5CoO3等或者金属,Au,Pt,Ag等。首先在SrTiO3基片(当然也可以是其它类型的基片,硅片、玻璃等)分别在丙酮、酒精中用超声波进行清洗,晾干;用砂纸将基片台进行打磨,并清洗干净,将晾干的基片用导热银胶粘在基片台上,然后根据所需要电极的形状、大小、个数用相应的掩膜版挡住基片。晾干后放入腔体中加热台上,开始抽真空。待气压抽到10-4Pa时,开始加热基片台。注意应缓慢加热,一般加热到700℃需要90分钟左右。达到目标温度后,用挡板将基片挡住,并通入所需气体到一定压强。设定激光的能量和频率参数,进行预溅射以去掉La0.7Sr0.3MnO3薄膜(这里以La0.7Sr0.3MnO3:简写为LSMO为例作为测量光伏效应的下电极,也可以选择其他导电薄膜)表面的污物,使薄膜露出新鲜的表面,预溅射时间一般为2~5分钟;预溅射过程中,调整激光光路、靶距等参数,以使羽辉末端与基片台相切。转动基片台及薄膜,并使激光在X、Y方向来回扫描;待温度、气压稳定之后,移开挡板,进行沉积。根据所需的薄膜厚度选择合适的沉积时间,沉积结束之后,按照需要充入一定的气体并缓慢降温。
[0040] 取用于覆盖基片的围壁,所述围壁包括侧壁、顶壁,所述围壁的燃烧/分解温度低于铁电材料的燃烧/分解温度,围壁的材料采用有机物薄片(或者其它材料做的薄膜,此材料必须分解温度较低,低于铁电材料,最好控制在500度以下),本实施例中围壁采用塑料片制成,在顶壁的下表面制备上电极。上电极可以通过在表面平整的顶壁上喷金、喷银等金属,或者用匀胶机旋涂上金、银等金属制备,或者用其他的方法制备上电极也可以。在实际制备过程中,可以根据需要制备任意形状、任意尺寸、任意个数的上电极。
[0041] 步骤2)制备容器
[0042] 如图1所示,将围壁通过AB胶、502胶水等,从四周和顶部覆盖粘接到基片上,得到薄片状容器,容器的长和宽都远大于厚。其目的是为了构成“薄片状”。如果容器太厚的话,容器的体积就会比较大,其中装的磁电性液体就会比较多,最后得到的铁电纳米链的厚度就比较厚。铁电材料的厚度越厚,光不能完全穿透,得到的光生载流子就比较少。另外,铁电层太厚的话,光生载流子复合的就越多,所得到的光生电流就很小。例如长和宽都为1cm,厚度为1mm。容器也可以通过其它方法加工。
[0043] 步骤3)制备磁电性液体
[0044] 第1步:CFO-BTO磁-电核壳结构磁性微粒的制备:
[0045] 制备具有强磁性的钴铁氧体(CFO)纳米微粒:
[0046] 例如,将FeCl3·6H2O(0.04mol,100mL)与Co(NO3)2·6H2O(0.02mol,100mL)混合,加入NaOH(0.35mol,500mL),然后将混合溶液加热到沸腾,伴之快速搅拌.沸腾持续1min后取下自然沉淀.充分沉淀后用1mol/L的HNO3溶液对沉淀物进行清洗直至pH值为7.然后将清洗所得产物经过丙酮脱水、干燥等工序后得到所需要的具有强磁性的CFO纳米微粒。
[0047] 以溶胶-凝胶法制备铁电性的钛酸钡(BTO)微粒:
[0048] 1)钡前驱液的配制:将适量的冰醋酸加入到醋酸钡中,置于80℃恒温水浴锅中加热溶解,冷却后转移入容量瓶中,采用滴定管滴加乙二醇乙醚定容即得Ba前驱液。2)钛前驱液的配制:将冰醋酸和乙二醇乙醚作为混合溶剂加入到钛酸四丁酯中,经溶解后转移到容量瓶中,采用滴定管滴入乙二醇乙醚定容即得Ti前驱液。将Ti前驱液滴加到Ba前驱液中,滴加后加入适量乙酰丙酮以调整溶胶粘度,混合均匀后经24小时即得纯钛酸钡的溶胶。若需制备掺杂钛酸钡的溶胶,只需同时加入适量的La前驱液、Nd前驱液或Co前驱液,经24小时老化后即得掺杂钛酸钡的溶胶。若有必要,还可加入适量乙醇胺以控制溶胶的粘度。然后将CFO磁性纳米微粒加入到溶胶中,最后将得到的溶胶和微粒的混合体在加热台上进行烘烤,烤干之后放入箱式炉进行烧结,在烧结温度为900℃,时间为2h。将所得产物充分研磨后,得到所需要的具有磁-电核壳结构的CFO-BTO纳米微粒。
[0049] 第2步:CFO-BTO磁-电核壳结构磁电性液体的制备:
[0050] 按照自己的需求,将一定质量的具有CFO-BTO磁-电核壳结构纳米微粒均匀的分散在一定浓度的硅油中。硅油具有耐高低温、化学稳定性好、蒸气压低、黏度受温度影响小等特点,是磁电性液体的理想载液。但是,硅油憎水、憎油的特性使得将具有CFO-BTO磁-电核壳结构纳米微粒均匀分散于其中的表面活性剂必须具有亲油性能,且能包覆磁性微粒,否则易出现团聚、沉降等现象。使用油酸作为表面活性剂。
[0051] 具体为:根据要求,例如需要配置微粒体积分数为5%,总体积为100ml的具有CFO-BTO磁-电核壳结构磁电性液体,那么,所需微粒体积均为5ml,其密度约为6g/cm3,则需要微粒的质量为30g;油酸的浓度为2%,则需要量取2ml的油酸;硅油的体积为100-5-2=93ml;因此,
[0052] 首先,称量30g的具有CFO-BTO磁-电核壳结构(体积约5cm3),加入2ml的油酸中,进行摇动,然后均匀的分散在93ml硅油中,放进密封好的玻璃瓶或者其它容器内,在摇床上进行摇动约1个小时。然后就得到微粒体积分数为5%,总体积为100ml的具有CFO-BTO磁-电核壳结构具有磁性的磁电性液体。
[0053] 第3步:将上一步中得到CFO-BTO磁电性液体用注射器或者其它方法注入到容器中,就得到图2中的装有磁电性液体的容器。
[0054] 步骤4)制备纳米链太阳能电池
[0055] 第1步:纳米链的形成:对上一步中得到的磁电性液体施加磁场,沿着磁场方向就得到铁电性纳米链。例如沿竖直方向施加磁场,就得到图3所示竖直方向的铁电纳米链。
[0056] 第2步:将上一步中得到结构放入高温烘烤,目的是将围壁的顶壁的物质分解掉。至于围壁侧壁的物质可以根据需要选择不同材料来决定是否分解掉,具体情况如下:如果需要从侧面测量纳米链的形貌,则需要将侧壁分解掉,否则不好观察。在测量表面形貌的时候,如果侧壁高度大于上电极的高度,以至于不好观察表面形貌的时候,就需要将侧壁分解掉。如果仅仅是测量竖直方向纳米链的性质,例如导电性、铁电性等,这时侧壁不会造成影响,则可以不用去掉。最后就得到图4的由铁电纳米链组成的太阳能电池结构。
[0057] 在形成纳米链之后,由于团聚,纳米链之间很容易形成团簇状,而不是一根一根分开的,团聚程度与微粒的浓度、施加磁场的大小和时间等因素有关,如图3、图4中所示的纵向的纳米链,从施加磁场开始,纳米链就能够与上下电极接触,在保持磁场下将液体蒸发之后,纳米链基本上也能保持原来的形状,与上下电极保持接触。
[0058] 对制得的太阳能电池进行检测,结果如下:
[0059] 从图5中可知,我们所制备的BTO粉末基本为球形,平均直接约为20nm。从图6中可知,正负偏压下得到的I-V曲线不对称,这主要是由于上下电极不同,导致BFO与上下电极之间形成的势垒高度不同所引起的。
[0060] 此外,可以发现我们得到的太阳能电池具有明显的光伏效应,即光照和不光照下,在相同电压下得到的电流具有明显的差异。表面我们的样品具有比较明显的光伏性能。
[0061] 本发明不仅仅局限于上述实施例,在实际制备过程中,也可以将装置转90度,然后施加水平的磁场,先生成横向的纳米链。高温烘烤之后,液体蒸发之后,由于重力作用,纳米链会沉积到底部,稳固之后,然后将装置转到原来的位置,即得到的竖直方向纳米链。
[0062] 本实施例中,围壁的顶壁上也可以不制备上电极,在最后的过程中直接在纳米链上部生长上电极。
[0063] 本发明不仅仅局限于上述实施例,如果是直接生成横向的纳米链,高温烘烤之后,液体蒸发之后,由于重力作用,纳米链会沉积到底部。这个时候电极与纳米链之间会产生大段的空间。因此,如果是生成横向的纳米链,围壁的顶壁上不需要制备上电极,在最后的过程中直接在横向纳米链上生长上电极,以保证上电极接触纳米链。
[0064] 最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

附图说明

[0030] 图1为本发明实施例步骤2)的示意图;
[0031] 图2为本发明实施例步骤3)第3步的示意图;
[0032] 图3为本发明实施例步骤4)第1步的示意图;
[0033] 图4为本发明实施例步骤4)第2步的示意图;
[0034] 图5为BTO粉末的透射电镜图;
[0035] 图6为光照-不光照下电池结构的I-V曲线。
[0036] 附图中,1为下电极,2为围壁,3为核壳结构纳米微粒,4为基液,5为铁电纳米链,6为上电极。
版权所有:盲专网 ©2023 zlpt.xyz  蜀ICP备2023003576号