首页 > 专利 > 宁波大学 > 基于Li+或La3+离子交换的Y型沸石氨气传感器专利详情

基于Li+或La3+离子交换的Y型沸石氨气传感器   0    0

有效专利 查看PDF
专利申请流程有哪些步骤?
专利申请流程图
申请
申请号:指国家知识产权局受理一件专利申请时给予该专利申请的一个标示号码。唯一性原则。
申请日:提出专利申请之日。
2016-05-17
申请公布
申请公布指发明专利申请经初步审查合格后,自申请日(或优先权日)起18个月期满时的公布或根据申请人的请求提前进行的公布。
申请公布号:专利申请过程中,在尚未取得专利授权之前,国家专利局《专利公报》公开专利时的编号。
申请公布日:申请公开的日期,即在专利公报上予以公开的日期。
2016-11-30
授权
授权指对发明专利申请经实质审查没有发现驳回理由,授予发明专利权;或对实用新型或外观设计专利申请经初步审查没有发现驳回理由,授予实用新型专利权或外观设计专利权。
2019-09-27
预估到期
发明专利权的期限为二十年,实用新型专利权期限为十年,外观设计专利权期限为十五年,均自申请日起计算。专利届满后法律终止保护。
2036-05-17
基本信息
有效性 有效专利 专利类型 发明专利
申请号 CN201610330202.1 申请日 2016-05-17
公开/公告号 CN106066346B 公开/公告日 2019-09-27
授权日 2019-09-27 预估到期日 2036-05-17
申请年 2016年 公开/公告年 2019年
缴费截止日
分类号 G01N27/12 主分类号 G01N27/12
是否联合申请 独立申请 文献类型号 B
独权数量 1 从权数量 5
权利要求数量 6 非专利引证数量 1
引用专利数量 4 被引证专利数量 0
非专利引证 1、孙炎辉 等.沸石及其复合物气体传感器的研究与发展《.硅酸盐通报》.2015,第34卷(第9期),郑雁公.面向VOC气体检测的氧化物纤维与Y型沸石的气敏性能及其机理研究《.中国博士学位论文全文数据库信息科技辑》.2015,郑雁公.面向VOC气体检测的氧化物纤维与Y型沸石的气敏性能及其机理研究《.中国博士学位论文全文数据库信息科技辑》.2015,;
引用专利 US2005284134A1、CN104220147A、CN103987444A、CN104136098A 被引证专利
专利权维持 3 专利申请国编码 CN
专利事件 事务标签 公开、实质审查、授权
申请人信息
申请人 第一申请人
专利权人 宁波大学 当前专利权人 宁波大学
发明人 郑雁公、吴其树、简家文 第一发明人 郑雁公
地址 浙江省宁波市江北区风华路818号 邮编 315211
申请人数量 1 发明人数量 3
申请人所在省 浙江省 申请人所在市 浙江省宁波市
代理人信息
代理机构
专利代理机构是经省专利管理局审核,国家知识产权局批准设立,可以接受委托人的委托,在委托权限范围内以委托人的名义办理专利申请或其他专利事务的服务机构。
宁波市鄞州盛飞专利代理事务所 代理人
专利代理师是代理他人进行专利申请和办理其他专利事务,取得一定资格的人。
张向飞
摘要
本发明涉及基于Li+或La3+离子交换的Y型沸石氨气传感器,适用于并不只限于对选择性催化还原(SCR)系统中的氨气浓度检测,属于气敏器件技术领域。所述的传感器通过将沸石基传感器浸泡在溶液中,并放于摇床上交换10‑20h制得,所述的溶液为氯化锂溶液或硝酸镧溶液。所述氯化锂溶液、硝酸镧溶液的浓度均为0.05‑0.2mol/L。本发明基于Li+或La3+离子交换的Y型沸石氨气传感器具有较高的灵敏响应,工作温度低,所需功耗较低,性能稳定可靠,且传感器的制备工艺及应用都十分简单。
  • 摘要附图
    基于Li+或La3+离子交换的Y型沸石氨气传感器
  • 说明书附图:图1
    基于Li+或La3+离子交换的Y型沸石氨气传感器
  • 说明书附图:图2
    基于Li+或La3+离子交换的Y型沸石氨气传感器
  • 说明书附图:图3
    基于Li+或La3+离子交换的Y型沸石氨气传感器
  • 说明书附图:图4
    基于Li+或La3+离子交换的Y型沸石氨气传感器
  • 说明书附图:图5
    基于Li+或La3+离子交换的Y型沸石氨气传感器
  • 说明书附图:图6
    基于Li+或La3+离子交换的Y型沸石氨气传感器
  • 说明书附图:图7
    基于Li+或La3+离子交换的Y型沸石氨气传感器
  • 说明书附图:图8
    基于Li+或La3+离子交换的Y型沸石氨气传感器
  • 说明书附图:图9
    基于Li+或La3+离子交换的Y型沸石氨气传感器
  • 说明书附图:图10
    基于Li+或La3+离子交换的Y型沸石氨气传感器
  • 说明书附图:图11
    基于Li+或La3+离子交换的Y型沸石氨气传感器
  • 说明书附图:图12
    基于Li+或La3+离子交换的Y型沸石氨气传感器
  • 说明书附图:图13
    基于Li+或La3+离子交换的Y型沸石氨气传感器
法律状态
序号 法律状态公告日 法律状态 法律状态信息
1 2019-09-27 授权
2 2016-11-30 实质审查的生效 IPC(主分类): G01N 27/12 专利申请号: 201610330202.1 申请日: 2016.05.17
3 2016-11-02 公开
权利要求
权利要求书是申请文件最核心的部分,是申请人向国家申请保护他的发明创造及划定保护范围的文件。
1.基于Li+或La3+离子交换的Y型沸石氨气传感器,其特征在于,所述的传感器通过将沸石基传感器浸泡在溶液中,并放于摇床上交换10-20h制得,所述的溶液为氯化锂溶液或硝酸镧溶液,所述氯化锂溶液、硝酸镧溶液的浓度均为0.05-0.2mol/L;基于Li+或La3+离子交换的Y型沸石氨气传感器的工作温度为200-250℃;
所述的基于Li+或La3+离子交换的Y型沸石氨气传感器,包括沸石片(1)、电极(2)和电极引线(3),所述的电极(2)分别印制在沸石片(1)的两侧,电极(2)上均引出电极引线(3),所述的电极(2)为银浆,采用丝网印刷技术印制成型。
+ 3+

2.根据权利要求1所述的基于Li或La 离子交换的Y型沸石氨气传感器,其特征在于,所述的沸石片(1)为Y型沸石制成的圆柱状片体,沸石片(1)的厚度为0.8-1.2mm,面积为36-
49mm2,所述的电极(2)厚度为50μm,面积为25-36mm2。

3.如权利要求1-2任一所述的基于Li+或La3+离子交换的Y型沸石氨气传感器的制备方法,其特征在于,所述的制备方法包括如下步骤:
称量一定量的Y型沸石放入模具中,由油压机压制成圆形片状,在高温炉中空气环境下
580-610℃烧结1-3h,制得沸石片(1);
采用丝网印刷技术将银浆料印刷在沸石片(1)的两侧形成电极,并在两侧电极(2)的中部用银浆点上银丝,先在70-90℃下干燥0.3-1h,然后在高温炉中580-610℃烧结1-3h,形成两侧具有电极(2)和电极引线(3)的沸石基传感器;
将沸石基传感器浸泡在溶液中,并放于摇床上交换10-20h即可制得基于Li+或La3+离子交换的Y型沸石氨气传感器。

4.根据权利要求3所述的基于Li+或La3+离子交换的Y型沸石氨气传感器的制备方法,其特征在于,所述的溶液为氯化锂溶液、硝酸镧溶液中的一种。

5.根据权利要求4所述的基于Li+或La3+离子交换的Y型沸石氨气传感器的制备方法,其特征在于,所述氯化锂溶液、硝酸镧溶液的浓度均为0.05-0.2mol/L。

6.如权利要求1-2任一所述的基于Li+或La3+离子交换的Y型沸石氨气传感器的应用,其特征在于,进行氨气测量前,对基于Li+或La3+离子交换的Y型沸石氨气传感器进行预处理:
将离子交换完成的传感器置于管式炉中的特制石英晶体管中,并吹入干燥空气,将管式炉的温度上升到580-610℃并保持1-3h。
说明书

技术领域

[0001] 本发明涉及基于Li+或La3+离子交换的Y型沸石氨气传感器,适用于并不只限于对选择性催化还原(SCR)系统中的氨气浓度检测,属于气敏器件技术领域。

背景技术

[0002] 近几年来,随着汽车工业的快速发展和汽车保有量的迅速增长,汽车尾气的排放对大气环境污染受到了广泛的关注。为了减少机动车尾气对空气环境的污染,尤其是针对汽车尾气中有害气体NOX的控制,采用的方法是加装选择性催化还原(SCR)系统,并在系统中注入氨气为作为还原剂,于SCR催化剂作用下分解氮氧化物为氮气和水。但为了控制SCR系统中NOX的转化效率,系统中氨气的含量需要精确控制和监测,如果氨气含量不足会使 NOX转化不充分,或氨气过量则会引起氨气流失,生成副产物,造成额外的污染。因此需要研发应用于SCR系统,在同时具有 NOX,O2,CO,CO2,HCs和H2O的混合气流中对氨气具有高选择性且稳定的气体传感器。
[0003] 目前报道在SCR系统中,采用各种材料和各种原理,能对氨气浓度进行测量的气敏器件,已经很多。如吉林大学传感器课题组在2015年报道基于YSZ电解质的Ni3V2O8敏感电极作为氨气传感器,但是NO2对检测结果存在严重干扰。德国拜罗伊特大学功能材料实验室Moos课题组报道了使用金属氧化物为敏感电极的电位式传感器,但在SCR环境测量中,O2和HCs对传感器信号带来了一定影响,限定了传感器使用条件。为了使传感器具有更好的适应性,Moos课题组又研究了一系列使用SCR催化剂为敏感材料的氨气传感器,但这类型传感器灵敏度较低,选择性也不能满足使用要求。同时,Moos课题组首先采用H+离子交换的 ZSM-5型沸石(Si/Al=140),应用于SCR系统的氨气检测,传感器工作在350~420℃情况下,沸石表面的酸性位点会吸附具有碱性的氨气,从而引起沸石的阻抗变化。报道结果显示传感器具有很好的选择性和稳定性。美国俄亥俄州立大学化学实验室的 Zheng和Dutta也报道了采用Ag+交换的Y型沸石(Si/Al=5)在 300~350℃温度范围内可以检测氨气浓度,并且对氨气具有较高的选择性。
[0004] 在SCR系统的气体环境中,根据以上报道,基于沸石的传感器对氨气检测具有高选择性和稳定性等优点。但是每种沸石材料只能在一个较小的温度范围内达到对氨气检测的目的,比如:已报到的H+离子交换的ZSM-5型沸石(H-ZSM-5,Si/Al=140)的工作温度为350~420℃,Ag+交换的Y型沸石(Ag-Y,Si/Al=2.5) 工作温度为300~350℃。沸石对氨气检测的工作温度取决于沸石的类型及其内部交换离子的组合。然而,由于SCR系统采用的催化剂不同,而工作在不同的温度情况下,比如采用钙钛矿材料作为SCR催化剂时,系统温度为200℃左右,采用沸石作为SCR 催化剂时,系统温度为300℃。安置于SCR系统中的氨气传感器,如果工作温度低于系统温度,其检测性能会受到环境温度影响而无法工作,但如果工作温度过高于系统温度时,则会增加传感器的能耗,造成浪费。

发明内容

[0005] 本发明的目的是针对现有的技术存在上述问题,通过交换Y 型沸石内不同的离子,提供基于Y型沸石的氨气传感器,对氨气检测的最佳工作温度低于300℃,适合应用于具有较低工作温度的SCR系统或检测环境。
[0006] 本发明的上述目的通过如下技术方案实现:基于Li+或La3+离子交换的Y型沸石氨气传感器,所述的传感器通过将沸石基传感器浸泡在溶液中,并放于摇床上交换10-20h制得,所述的溶液为氯化锂溶液或硝酸镧溶液。
[0007] 本发明依据氨气吸附于沸石内会和其交换离子进行络合反应,从而改变沸石的离子电导率,由于不同的阳离子和氨气之间的络合反应强度不同,因此沸石内不同的交换离子会产生不同的气敏性能。本发明经过多次反复实验,采用液相离子交换方法将沸石内的Na+交换制备成含Li+或La3+离子的Y型沸石氨气传感器, Li+或La3+离子的Y型沸石氨气传感器工作温度较低,为 200~250℃,响应高,性能稳定。
[0008] 所述氯化锂溶液、硝酸镧溶液的浓度均为0.05-0.2mol/L。溶液浓度对液相离子交换非常重要,若溶液浓度过低会使离子交换时间过长,甚至无法达到完全交换的程度;若溶液浓度过高,则会有过多的金属盐晶体附着在沸石表面,影响传感器的性能,尤其影响传感器的气敏测试。
[0009] 所述的基于Li+或La3+离子交换的Y型沸石氨气传感器,包括沸石片、电极和电极引线,所述的电极分别印制在沸石片的两侧,电极上均引出电极引线,所述的电极为银浆,采用丝网印刷技术印制成型。
[0010] 由于本发明中的沸石氨气传感器的工作温度为200-250℃,需要考虑沸石片的相对阻抗,如果沸石片的阻抗过大,则测试仪器无法准确测量沸石的阻抗值,因此需要减小沸石片的厚度,或者增大电极的面积,但考虑现有技术和传感器的体积,因此作为优选,所述的沸石片为Y型沸石制成的圆柱状片体,沸石片的厚度为0.8-1.2mm,面积为36-49mm2,所述的电极厚度为50μm,面积为25-36mm2。
[0011] 本发明的另一个目的在于基于Li+或La3+离子交换的Y型沸石氨气传感器的制备方法,所述的制备方法包括如下步骤:
[0012] 称量一定量的Y型沸石放入模具中,由油压机压制成圆形片状,在高温炉中空气环境下580-610℃烧结1-3h,制得沸石片;
[0013] 采用丝网印刷技术将银浆料印刷在沸石片的两侧形成电极,并在两侧电极的中部用银浆点上银丝,先在70-90℃下干燥0.3-1h,然后在高温炉中580-610℃烧结1-3h,形成两侧具有电极和电极引线的沸石基传感器;
[0014] 将沸石基传感器浸泡在溶液中,并放于摇床上交换10-20h 即可制得基于Li+或La3+离子交换的Y型沸石氨气传感器。
[0015] 作为优选,所述的溶液为氯化锂溶液、硝酸镧溶液中的一种。进一步优选,所述氯化锂溶液、硝酸镧溶液的浓度均为 0.05-0.2mol/L。
[0016] 本发明还公开了基于Li+或La3+离子交换的Y型沸石氨气传感器的应用,在传感器+ 3+进行氨气测量前,对基于Li 或La 离子交换的Y型沸石氨气传感器进行预处理:将离子交换完成的传感器置于管式炉中的特制石英晶体管中,并吹入干燥空气,将管式炉的温度上升到580-610℃并保持1-3h。
[0017] 与现有技术相比,本发明具有如下优点:本发明基于Li+或 La3+离子交换的Y型沸石氨气传感器具有较高的灵敏响应,工作温度低,所需功耗较低,性能稳定可靠,且传感器的制备工艺及应用都十分简单。

实施方案

[0032] 以下是本发明的具体实施例并结合附图,对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。
[0033] 如图1所示,本发明基于Li+或La3+离子交换的Y型沸石氨气传感器包括沸石片1、电极2和电极引线3,电极2分别印制在沸石片1的两侧,电极2上均引出电极引线3,所述的电极2为银浆,采用丝网印刷技术印制成型。沸石片1为不同种类沸石制成的圆柱状片体,沸石片
1的厚度为0.8-1.2mm2,面积为36-49mm2。电极2厚度为50μm,面积为25-36mm2。
[0034] 实施例1
[0035] 一种基于阳离子交换的Y型沸石氨气传感器,通过将沸石基传感器浸泡在浓度为0.1mol/L的氯化锂溶液中,并放于摇床上交换12h制得。
[0036] 具体地通过如下制备方法制得:称量一定量的Y型沸石放入模具中,由油压机压制2
成圆形片状,在空气环境下在600℃的高温炉中烧结2h,制得面积为40mm 厚度为1.0mm的沸石片;
[0037] 采用丝网印刷技术将银浆料印刷在上述沸石片的两侧作电极,两侧电极的面积均为30mm2,厚度均为50μm,并分别在两侧电极的中部用银浆点上银丝,先在80℃下干燥0.5h,然后在600℃的高温炉中烧结2h,形成两侧具有电极和电极引线的沸石基传感器;
[0038] 将沸石基传感器浸泡在浓度为0.1mol/L的氯化铵溶液中,并放于摇床上交换12即可制得基于阳离子交换的Y型沸石氨气传感器,本实施例为基于Li+离子交换的Y型沸石氨气传感器。
[0039] 实施例2
[0040] 与实施例1的区别仅在于:基于阳离子交换的Y型沸石氨气传感器通过将沸石基传感器浸泡在浓度为0.1mol/L的硝酸镧溶液中进行液相离子交换,其他与实施例1相同,此处不再累述,本实施例制得基于La3+离子交换的Y型沸石氨气传感器。
[0041] 实施例3
[0042] 与实施例1的区别仅在于,沸石片的烧结温度为590℃,烧结时间为1.5h,沸石片的面积为42mm2,厚度为0.9mm,电极面积为28mm2,厚度为50μm,用银浆点上银丝后先在85℃下干燥 0.8h然后在高温炉中590℃烧结2.5h;氯化锂溶液的浓度为 0.15mol/L,其他与实施例1相同,此处不再累述。
[0043] 实施例4
[0044] 与实施例1的区别仅在于,沸石片的烧结温度为580℃,烧结时间为3h,沸石片的面积为45mm2,厚度为1.2mm,两侧电极的面积为33mm2,厚度为50μm,用银浆点上银丝后先在70℃下干燥1h然后在高温炉中580℃烧结3h;氯化锂溶液的浓度为 0.15mol/L,其他与实施例1相同,此处不再累述。
[0045] 实施例5
[0046] 与实施例1的区别仅在于,沸石片的烧结温度为610℃,烧结时间为1h,沸石片的面积为36mm2,厚度为0.8mm,两侧电极的面积为25mm2,厚度为50μm,用银浆点上银丝后先在90℃下干燥0.3h然后在高温炉中610℃烧结1h;氯化锂溶液的浓度为 0.2mol/L,其他与实施例1相同,此处不再累述。
[0047] 实施例6
[0048] 与实施例3的区别仅在于,基于阳离子交换的Y型沸石氨气传感器通过将沸石基传感器浸泡在硝酸镧溶液中进行液相离子交换,其他与实施例3相同,此处不再累述。
[0049] 实施例7
[0050] 与实施例4的区别仅在于,基于阳离子交换的Y型沸石氨气传感器通过将沸石基传感器浸泡在硝酸镧溶液中进行液相离子交换,其他与实施例4相同,此处不再累述。
[0051] 实施例8
[0052] 与实施例5的区别仅在于,基于阳离子交换的Y型沸石氨气传感器通过将沸石基传感器浸泡在硝酸镧溶液中进行液相离子交换,其他与实施例5相同,此处不再累述。
[0053] 对比例
[0054] 未进行液相离子交换的沸石基传感器即为Na-Y型气体传感器。
[0055] 将实施例1-2中的基于Li+或La3+离子交换的Y型沸石氨气传感器置于管式炉中的特制石英晶体管中,并吹入干燥空气,将管式炉的温度上升到600℃并保持2h,然后进行氨气测量。
[0056] 如图2所示,为本发明实施例1中基于Li+离子交换的Y型沸石氨气传感器的阻抗在背景气体下随温度的变化(线1),在200 ppm氨气中传感器的阻抗随温度的变化(线2),传感器对氨气吸附饱和后在背景气体中,其阻抗随温度的变化(线3)。通过图2 中的三条线对比,可以发现Li-Y型传感器的最佳工作温度在 225℃左右。进一步地,如图3-5所示,为Li+离子交换的Y型沸石氨气传感器分别在175℃、225℃和275℃下对氨气的气敏测试,从结果上可以发现传感器在175℃对氨气的气敏响应比较大,但很难恢复,不符合传感器使用要求。在275℃时虽然传感器可以恢复,但气敏响应较225℃工作温度下气敏响应小。因此,综上所述225℃为基于Li+离子交换的Y型沸石氨气传感器的最佳工作温度。
[0057] 如图6所示,为本发明实施例2中基于La3+离子交换的Y型沸石传感器的阻抗在背景气体下随温度的变化(线1),在200ppm 氨气中传感器的阻抗随温度的变化(线2),传感器对氨气吸附饱和后在背景气体中,其阻抗随温度的变化(线3)。通过图2中的三条线对比,可以发现La-Y型传感器的最佳工作温度在250℃左右。进一步地,如图7-9所示,为La3+离子交换的Y型沸石传感器分别在200℃、250℃和300℃工作温度下的气敏测试,对比可以发现,在200℃下,传感器气敏响应难以恢复,同时在300℃下几乎没有气敏响应,综上所述,基于La3+离子交换的Y型沸石氨气传感器的最佳工作温度在250℃左右。
[0058] 如图10所示,为对比例中未进行液相离子交换的沸石基传感器的阻抗在背景气体下随温度的变化(线1),在200ppm氨气中传感器的阻抗随温度的变化(线2),传感器对氨气吸附饱和后在背景气体中,其阻抗随温度的变化(线3)。通过图2中的三条线对比,可以发现Na-Y型传感器的最佳工作温度在200℃左右。进一步地,如图11-13所示,为对比例中传感器分别在150℃、200℃和250℃工作温度下的气敏测试,对比可以发现,在150℃下,传感器气敏响应难以恢复,同时在250℃下传感器气敏响应较低,综上所述,基于Na+离子交换的Y型沸石氨气传感器的最佳工作温度在200℃左右。
[0059] 如图4、图8、图12分别为实施例1中基于Li+离子交换的Y 型沸石氨气传感器、实施3+
例2中基于La 离子交换的Y型沸石氨气传感器和对比例中的传感器在各自的最佳工作温度下,在20%的O2和N2背景气体下,测试频率为3kHz,激励电压为0.5V,对不同浓度(100ppm、
200ppm和300ppm)的NH3响应阶梯图。传感器响应值通过公式 计算,
其中Zb是背景气氛下传感器的阻抗,Zg是一定浓度下传感器的阻抗。
[0060] 经计算,实施例1中基于Li+离子交换的Y型沸石氨气传感器、实施例2中基于La3+离子交换的Y型沸石氨气传感器和对比例中的传感器在各自最佳温度下(分别为225℃、250℃、200℃) 对100ppm、200ppm和300ppm的NH3的响应值如表1所示。表 1:对比例以及本发明实施例1-3中的基于阳离子交换的Y型沸石氨气传感器对不同浓度氨气的响应值R(%)。
[0061]
[0062] 综上所述,实施例1和实施例2中的传感器在所测的三个浓度下比对比例中的传感器具有较高的响应值。
[0063] 本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

附图说明

[0018] 图1是本发明基于Li+或La3+离子交换的Y型沸石氨气传感器的结构示意图;
[0019] 图2是本发明实施例1中基于Li+离子交换的Y型沸石氨气传感器的阻抗在背景气体下随温度的变化(线1),在200ppm氨气中传感器的阻抗随温度的变化(线2),传感器对氨气吸附饱和后在背景气体中,其阻抗随温度的变化(线3)。
[0020] 图3是本发明实施例1中基于Li+离子交换的Y型沸石氨气传感器在175℃下的阶梯响应曲线。
[0021] 图4是本发明实施例1中基于Li+离子交换的Y型沸石氨气传感器在225℃下的阶梯响应曲线。
[0022] 图5是本发明实施例1中基于Li+离子交换的Y型沸石氨气传感器在275℃下的阶梯响应曲线。
[0023] 图6是本发明实施例2中基于La3+离子交换的Y型沸石氨气传感器的阻抗在背景气体下随温度的变化(线1),在200ppm氨气中传感器的阻抗随温度的变化(线2),传感器对氨气吸附饱和后在背景气体中,其阻抗随温度的变化(线3)。
[0024] 图7是本发明实施例2中基于La3+离子交换的Y型沸石氨气传感器在200℃下的阶梯响应曲线。
[0025] 图8是本发明实施例2中基于La3+离子交换的Y型沸石氨气传感器在250℃下的阶梯响应曲线。
[0026] 图9是本发明实施例2中基于La3+离子交换的Y型沸石氨气传感器在300℃下的阶梯响应曲线。
[0027] 图10是对比例中未进行液相离子交换的沸石基传感器的阻抗在背景气体下随温度的变化(线1),在200ppm氨气中传感器的阻抗随温度的变化(线2),传感器对氨气吸附饱和后在背景气体中,其阻抗随温度的变化(线3)。
[0028] 图11是对比例中未进行液相离子交换的沸石基传感器在 150℃下的阶梯响应曲线。
[0029] 图12是对比例中未进行液相离子交换的沸石基传感器在 200℃下的阶梯响应曲线。
[0030] 图13是对比例中未进行液相离子交换的沸石基传感器在 250℃下的阶梯响应曲线。
[0031] 附图标记说明:1、固体电解质;2、电极;3、电极引线。
专利联系人(活跃度排行)
版权所有:盲专网 ©2023 zlpt.xyz  蜀ICP备2023003576号