首页 > 专利 > 杭州电子科技大学 > 一种TiO2纳米棒/多层石墨烯复合材料及制备方法专利详情

一种TiO2纳米棒/多层石墨烯复合材料及制备方法   0    0

有效专利 查看PDF
专利申请流程有哪些步骤?
专利申请流程图
申请
申请号:指国家知识产权局受理一件专利申请时给予该专利申请的一个标示号码。唯一性原则。
申请日:提出专利申请之日。
2020-06-02
申请公布
申请公布指发明专利申请经初步审查合格后,自申请日(或优先权日)起18个月期满时的公布或根据申请人的请求提前进行的公布。
申请公布号:专利申请过程中,在尚未取得专利授权之前,国家专利局《专利公报》公开专利时的编号。
申请公布日:申请公开的日期,即在专利公报上予以公开的日期。
2020-11-06
授权
授权指对发明专利申请经实质审查没有发现驳回理由,授予发明专利权;或对实用新型或外观设计专利申请经初步审查没有发现驳回理由,授予实用新型专利权或外观设计专利权。
2022-07-12
预估到期
发明专利权的期限为二十年,实用新型专利权期限为十年,外观设计专利权期限为十五年,均自申请日起计算。专利届满后法律终止保护。
2040-06-02
基本信息
有效性 有效专利 专利类型 发明专利
申请号 CN202010487753.5 申请日 2020-06-02
公开/公告号 CN111792669B 公开/公告日 2022-07-12
授权日 2022-07-12 预估到期日 2040-06-02
申请年 2020年 公开/公告年 2022年
缴费截止日
分类号 C01G23/053C01B32/19 主分类号 C01G23/053
是否联合申请 独立申请 文献类型号 B
独权数量 1 从权数量 3
权利要求数量 4 非专利引证数量 1
引用专利数量 0 被引证专利数量 0
非专利引证 1、CN 110201658 A,2019.09.06CN 104332321 A,2015.02.04CN 109243832 A,2019.01.18CN 109216670 A,2019.01.15CN 104998630 A,2015.10.28CN 101550595 A,2009.10.07CN 106512939 A,2017.03.22王冰,等“.盐酸浓度对TiO2纳米棒的影响”. 《功能材料》.2013,第44卷(第13期),;
引用专利 被引证专利
专利权维持 2 专利申请国编码 CN
专利事件 事务标签 公开、实质审查、授权
申请人信息
申请人 第一申请人
专利权人 杭州电子科技大学 当前专利权人 杭州电子科技大学
发明人 徐军明、朱安福、胡振明、计晨铭 第一发明人 徐军明
地址 浙江省杭州市下沙高教园区 邮编 310018
申请人数量 1 发明人数量 4
申请人所在省 浙江省 申请人所在市 浙江省杭州市
代理人信息
代理机构
专利代理机构是经省专利管理局审核,国家知识产权局批准设立,可以接受委托人的委托,在委托权限范围内以委托人的名义办理专利申请或其他专利事务的服务机构。
浙江永鼎律师事务所 代理人
专利代理师是代理他人进行专利申请和办理其他专利事务,取得一定资格的人。
陆永强
摘要
本发明公开了一种TiO2纳米棒/多层石墨烯复合材料及制备方法,该复合材料以多层石墨烯为碳基底,表面均匀分布TiO2纳米棒;TiO2纳米棒直径小于100纳米,长度在500nm以下,长径比位于3~7左右。纳米棒均匀分布于多层石墨烯表面,部分纳米棒之间有交叠,纳米棒之间形成较大的孔隙。该复合材料的制备过程为:1、将膨胀石墨加入DMF和蒸馏水的混合液中超声获得多层石墨烯片;2、在多层石墨烯中加入钛粉、浓盐酸、烯硝酸溶液;3、将混合液放入90℃水浴锅中进行磁力搅拌反应一定小时。4、将反应产物进行去离子水和酒精清洗,烘干后得到最终复合物材料。采用该方法制备的TiO2纳米棒/多层石墨烯复合材料在锂离子电池负极材料、锂硫电池正极材料、光催化等领域具有潜在的应用。
  • 摘要附图
    一种TiO2纳米棒/多层石墨烯复合材料及制备方法
  • 说明书附图:图1
    一种TiO2纳米棒/多层石墨烯复合材料及制备方法
  • 说明书附图:图2
    一种TiO2纳米棒/多层石墨烯复合材料及制备方法
  • 说明书附图:图3
    一种TiO2纳米棒/多层石墨烯复合材料及制备方法
  • 说明书附图:图4
    一种TiO2纳米棒/多层石墨烯复合材料及制备方法
法律状态
序号 法律状态公告日 法律状态 法律状态信息
1 2022-07-12 授权
2 2020-11-06 实质审查的生效 IPC(主分类): C01G 23/053 专利申请号: 202010487753.5 申请日: 2020.06.02
3 2020-10-20 公开
权利要求
权利要求书是申请文件最核心的部分,是申请人向国家申请保护他的发明创造及划定保护范围的文件。
1.一种TiO2纳米棒/多层石墨烯复合材料,其特征在于,TiO2结晶形成纳米棒形貌且纳米棒均匀分布于多层石墨烯表面,部分纳米棒之间有交叠并形成孔隙;其中,TiO2纳米棒与多层石墨烯之间以分子力结合,TiO2结晶为金红石形TiO2,纳米棒的长径比位于3~7之间,其直径小于100nm且长度小于500nm;
该复合材料采用钛粉为钛源,通过水浴搅拌反应一步法制备得到,其制备方法包括以下步骤:
步骤S10,量取体积比为4:1的DMF和去离子水,混合均匀后作为混合溶剂A;
步骤S20,称取一定量的膨胀石墨加入混合溶剂A中,经超声获得多层石墨烯分散液,其中,膨胀石墨相对于溶剂A的浓度为2~4mg/mL;
步骤S30,量取硝酸和去离子水,配成2mol/L的稀硝酸溶液,称为B溶液;
步骤S40,称取钛粉加入到石墨烯分散液中,钛粉的粒径在10~50微米;量取36%浓度的盐酸和B溶液加入到石墨烯分散液中;然后放入到90℃水浴中进行搅拌反应36~60小时,搅拌速度300转每分钟;其中钛粉相对于A溶液的浓度为4~6mg/mL,盐酸与A溶液的体积比为1.2:1~1.4:1,B溶液与A溶液的体积比为0.02:1~0.03:1;
步骤S50,冷却后通过离心清洗收集反应产物,离心清洗后,经干燥后得到TiO2纳米棒/多层石墨烯复合材料。

2.根据权利要求1所述的TiO2纳米棒/多层石墨烯复合材料,其特征在于,多层石墨烯层数小于100层。

3.根据权利要求1所述的TiO2纳米棒/多层石墨烯复合材料,其特征在于,在步骤S40中,
3+ 3+ 4+ 4+
钛粉在盐酸的作用下逐渐溶解为Ti 离子,稀硝酸将Ti 进一步氧化成Ti ,DMF与Ti 形成络合物,并通过分子力的作用被多层石墨烯吸附,并随后产生水解形成二氧化钛;通过水浴搅拌控制二氧化钛的形成速度,使随后产生的二氧化钛在最先形成的二氧化钛纳米晶表面进行择优生长进而形成棒状。

4.根据权利要求1所述的TiO2纳米棒/多层石墨烯复合材料,其特征在于,反应产物经离心清洗后,放置烘箱中70℃干燥24小时。
说明书

技术领域

[0001] 本发明属于材料技术领域,尤其涉及一种TiO2纳米棒/多层石墨烯复合材料及制备方法。制备的材料在锂离子电池负极材料、锂硫电池正极材料、光催化等领域具有潜在的应用。

背景技术

[0002] 二氧化钛材料在颜料、催化剂载体、光催化、锂离子电池、锂硫电池等领域具有广泛的应用。而纳米级二氧化钛由于具有尺寸效应、量子效应等,具有更加优异的性能。由于纳米二氧化钛本身容易团聚,及纳米二氧化二钛自身导电性能差。因此,在作为电极材料应用时,纳米二氧化钛经常与导电材料进行复合,如碳材料。其中,目前研究最多的是纳米氧化钛与石墨烯进行复合并进行各种性能的研究。
[0003] 然而,目前石墨烯与纳米二氧化钛复合材料的制备技术上,具有以下特点。1、采用的钛源主要是TiCl4及钛酸丁酯等钛的有机物。这些钛源非常容易产生水解,由于水解为TiO2的速度太快,制备的二氧化钛容易团聚。因此,钛前驱体在溶液中的浓度不能太高,导致纳米二氧化钛在石墨烯表面的分布密度低。2、目前采用主要采用水热法或微波加热的方法制备复合材料。这些方法并不适合于规模化生产。3、目前在石墨烯表面制备的主要是纳米颗粒。在多层石墨烯表面制备纳米棒的相关报道甚少。纳米棒在石墨烯表面易形成三维多孔结构,可以提拱材料优异的电化学性能。
[0004] 针对现有技术的不足,有必要提出一种技术方案以解决现有技术存在的技术问题。

发明内容

[0005] 针对现有技术中的不足,本发明提出一种TiO2纳米棒/多层石墨烯复合材料及制备方法,采用钛粉为钛源,通过水浴搅拌反应,一步法制备TiO2纳米棒/多层石墨烯复合材料,制备工艺简单,有利于工业化制备。
[0006] 为了解决现有技术存在的技术问题,本发明公开了一种TiO2纳米棒/多层石墨烯复合材料,TiO2结晶形成纳米棒形貌且纳米棒均匀分布于多层石墨烯表面,部分纳米棒之间有交叠并形成孔隙;其中,TiO2纳米棒与多层石墨烯之间以分子力结合,TiO2结晶为金红石形TiO2,纳米棒的长径比位于3~7之间,其直径小于100nm且长度小于500nm;多层石墨烯层数小于100层。
[0007] 本发明还公开了该TiO2纳米棒/多层石墨烯复合材料的制备方法,包括如下步骤:
[0008] 步骤S10,量取体积比为4:1的DMF和去离子水,混合均匀后作为混合溶剂A;
[0009] 步骤S20,称取一定量的膨胀石墨加入混合溶剂A中,超声5小时获得多层石墨烯分散液,其中,膨胀石墨相对于溶剂A的浓度为 2~4mg/mL;
[0010] 步骤S30,量取硝酸和去离子水,配成2mol/L的稀硝酸溶液,称为B溶液;
[0011] 步骤S40,称取钛粉加入到石墨烯分散液中,钛粉的粒径在10~ 50微米;量取36%浓度的盐酸和B溶液加入到石墨烯分散液中;然后放入到90℃水浴中进行磁力搅拌反应36~60小时,磁力搅拌速度 300转每分钟;其中钛粉相对于A溶液的浓度为4~6mg/mL,盐酸与 A溶液的体积比为1.2:1~1.4:1,B溶液与A溶液的体积比为 0.02:1~0.03:1。
[0012] 步骤S50,冷却后通过离心清洗收集黑色产物,离心清洗采用3 次去离子水,3次酒精离心清洗,离心机速度为6000转/分;洗后放置烘箱中70℃干燥24小时,干燥后得到本发明的TiO2纳米棒/多层石墨烯复合材料。
[0013] 上述技术方案是基于盐酸、硝酸及DMF的共同作用下实现的。较高浓度的盐酸的主3+
要用途是溶解金属钛粉,钛粉在盐酸的作用下逐渐溶解为Ti 离子。在没有烯硝酸的情况
3+ 4+
下,含有Ti 的紫色溶液一直保持,并不会进一步被氧化为Ti 。而加入稀硝酸后,稀硝酸可
3+ 4+ 4+ 4+
以将Ti 进一步氧化成Ti 。DMF的作用是与Ti 形成络合物,与Ti 形成的络合物通过分子力的作用被多层石墨烯吸附,并随后产生水解形成二氧化钛。由于形成二氧化钛的速度较慢,随后产生的二氧化钛在最先形成的二氧化钛纳米晶表面进行择优生长,从而形成棒状。
[0014] 与现有技术相比,本发明具有如下特点:
[0015] (1)以金属钛粉为原料,不需要把钛制成有机钛盐,从而节约成本。以金属钛为钛源,可以通过酸浓度来控制二氧化钛的溶解和沉积速度,从而制备出纳米棒。
[0016] (2)本制备方法不需要对多层石墨烯表面进行活化处理,依靠分子力的作用沉积二氧化钛,使二氧化钛在多层石墨烯表面的分布更加均匀。
[0017] (3)本发明制备的二氧化钛纳米棒,均匀分布于多层石墨烯表面,部分纳米棒之间有交叠,纳米棒之间形成较大的孔隙。
[0018] (4)本发明采用水浴搅拌反应,一步法制备工艺,制备温度低,制备设备简单,有利于工业化制备。
[0019] (5)复合材料以多层石墨烯作为碳材料基底。多层石墨烯通过简单的超声法制备,比单层石墨烯和氧化石墨烯制备成本低。多层石墨烯同样具有良好的导电性,较大的比表面积,具有很强的负载TiO2纳米棒的能力。

实施方案

[0024] 以下将结合附图对本发明提供的技术方案作进一步说明。
[0025] 参见图1,所示为本发明TiO2纳米棒/多层石墨烯复合材料的制备方法的流程框图,包括如下步骤:
[0026] 步骤S10,量取体积比为4:1的DMF和去离子水,混合均匀后作为混合溶剂A;
[0027] 步骤S20,称取一定量的膨胀石墨加入混合溶剂A中,超声5小时获得多层石墨烯分散液,其中,膨胀石墨相对于溶剂A的浓度为 2~4mg/mL;
[0028] 步骤S30,量取硝酸和去离子水,配成2mol/L的稀硝酸溶液,称为B溶液;
[0029] 步骤S40,称取钛粉加入到石墨烯分散液中,钛粉的粒径在10~ 50微米;量取36%浓度的盐酸和B溶液加入到石墨烯分散液中;然后放入到90℃水浴中进行磁力搅拌反应36~60小时,磁力搅拌速度 300转每分钟;其中钛粉相对于A溶液的浓度为4~6mg/mL,盐酸与 A溶液的体积比为1.2:1~1.4:1,B溶液与A溶液的体积比为 0.02:1~0.03:1。
[0030] 步骤S50,冷却后通过离心清洗收集黑色产物,离心清洗采用3 次去离子水,3次酒精离心清洗,离心机速度为6000转/分;洗后放置烘箱中70℃干燥24小时,干燥后得到本发明的TiO2纳米棒/多层石墨烯复合材料。
[0031] 上述方法制备的TiO2纳米棒/多层石墨烯复合材料,TiO2结晶形成纳米棒形貌且纳米棒均匀分布于多层石墨烯表面,部分纳米棒之间有交叠并形成孔隙;其中,TiO2纳米棒与多层石墨烯之间以分子力结合,TiO2结晶为金红石形TiO2,纳米棒的长径比位于3~7之间,其直径小于100nm且长度小于500nm;多层石墨烯层数小于100层。
[0032] 以下通过实施例进一步描述本发明的制备过程和实验结果。
[0033] 实例化1
[0034] 4mlDMF和1ml蒸馏水混合均匀后作为混合溶剂,称取10mg的膨胀石墨加入混合溶剂,超声振荡5小时后使膨胀石墨剥离为多层石墨烯均匀分散在溶剂中,获得多层石墨烯分散液。在多层石墨烯分散液中加入20mg钛粉和6ml的浓盐酸(36%)和150ul浓度为2mol/L 的稀硝酸。然后在90℃、300转每分钟转速下水浴搅拌36小时。冷却后通过离心清洗收集黑色产物,离心清洗采用3次去离子水,3次酒精离心清洗,清洗后放置烘箱中70℃干燥24小时,干燥后得到纳米TiO2纳米棒/多层石墨烯复合材料。
[0035] 实例化2
[0036] 4mlDMF和1ml蒸馏水混合均匀后作为混合溶剂A,称取15mg 的膨胀石墨加入混合溶剂A中,超声振荡5小时后使膨胀石墨剥离为多层石墨烯均匀分散在溶剂中,获得多层石墨烯分散液。在多层石墨烯分散液中加入23mg钛粉和6ml的浓盐酸(36%)和120ul浓度为 2mol/L的稀硝酸。然后在90℃、300转每分钟转速下水浴搅拌48小时。冷却后通过离心清洗收集黑色产物,离心清洗采用3次去离子水, 3次酒精离心清洗,清洗后放置烘箱中70℃干燥24小时,干燥后得到纳米TiO2棒/多层石墨烯复合材料。
[0037] 实例化3
[0038] 4mlDMF和1ml蒸馏水混合均匀后作为混合溶剂A,称取20mg 的膨胀石墨加入混合溶剂A中,超声振荡5小时后使膨胀石墨剥离为多层石墨烯均匀分散在溶剂中,获得多层石墨烯分散液。在多层石墨烯分散液中加入30mg钛粉和7ml浓盐酸(36%)和150ul浓度为 2mol/L的稀硝酸。然后在90℃、300转每分钟转速下水浴搅拌60小时。冷却后通过离心清洗收集黑色产物,离心清洗采用3次去离子水, 3次酒精离心清洗,清洗后放置烘箱中70℃干燥24小时,干燥后得到纳米TiO2棒/多层石墨烯复合材料。
[0039] 实例化4
[0040] 4mlDMF和1ml蒸馏水混合均匀后作为混合溶剂A,称取17mg 的膨胀石墨加入混合溶剂A中,超声振荡5小时后使膨胀石墨剥离为多层石墨烯均匀分散在溶剂中,获得多层石墨烯分散液。在多层石墨烯分散液中加入25mg钛粉和6.5ml浓盐酸(36%)和130ul浓度为2mol/L的稀硝酸。然后在90℃、300转每分钟转速下水浴搅拌50 小时。冷却后通过离心清洗收集黑色产物,离心清洗采用3次去离子水,3次酒精离心清洗,清洗后放置烘箱中70℃干燥
24小时,干燥后得到纳米TiO2棒/多层石墨烯复合材料。
[0041] 将实例1制备得到的复合材料进行XRD检测,如图2所示,可以从图中看到多层石墨烯和TiO2的衍射峰。TiO2的衍射峰很宽,说明TiO2的棒很小。没有发现其它物相,说明制备得到的相很纯。
[0042] 将实例1制备得到的复合材料进行SEM观察,如图3是其低倍电镜图,图4是其高倍电镜图。低倍SEM图可以观察到TiO2纳米棒在多层石墨烯表面分布非常均匀。高倍SEM图可以观察到TiO2纳米棒直径小于100纳米,长度在500nm以下,长径比位于3~7左右。纳米棒均匀分布于多层石墨烯表面,部分纳米棒之间有交叠,纳米棒之间形成较大的孔隙。
[0043] 以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
[0044] 对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

附图说明

[0020] 图1为本发明实施例1的TiO2纳米棒/多层石墨烯复合材料制备方法的步骤流程图;
[0021] 图2为本发明实施例2的TiO2纳米棒/多层石墨烯复合材料的 XRD图;
[0022] 图3为本发明实施例2的TiO2纳米棒/多层石墨烯复合材料的低倍扫描电镜图;
[0023] 图4为本发明实施例2的TiO2纳米棒/多层石墨烯复合材料的高倍扫描电镜图;
版权所有:盲专网 ©2023 zlpt.xyz  蜀ICP备2023003576号