首页 > 专利 > 扬州工业职业技术学院 > 一种载银活性炭抗菌纤维膜的制备方法专利详情

一种载银活性炭抗菌纤维膜的制备方法   0    0

有效专利 查看PDF
专利申请流程有哪些步骤?
专利申请流程图
申请
申请号:指国家知识产权局受理一件专利申请时给予该专利申请的一个标示号码。唯一性原则。
申请日:提出专利申请之日。
2020-08-14
申请公布
申请公布指发明专利申请经初步审查合格后,自申请日(或优先权日)起18个月期满时的公布或根据申请人的请求提前进行的公布。
申请公布号:专利申请过程中,在尚未取得专利授权之前,国家专利局《专利公报》公开专利时的编号。
申请公布日:申请公开的日期,即在专利公报上予以公开的日期。
2020-11-27
授权
授权指对发明专利申请经实质审查没有发现驳回理由,授予发明专利权;或对实用新型或外观设计专利申请经初步审查没有发现驳回理由,授予实用新型专利权或外观设计专利权。
2021-08-31
预估到期
发明专利权的期限为二十年,实用新型专利权期限为十年,外观设计专利权期限为十五年,均自申请日起计算。专利届满后法律终止保护。
2040-08-14
基本信息
有效性 有效专利 专利类型 发明专利
申请号 CN202010817183.1 申请日 2020-08-14
公开/公告号 CN111910344B 公开/公告日 2021-08-31
授权日 2021-08-31 预估到期日 2040-08-14
申请年 2020年 公开/公告年 2021年
缴费截止日
分类号 D04H1/728D04H1/43D04H3/02D04H3/007D01D5/00D01F6/54D01F1/10 主分类号 D04H1/728
是否联合申请 独立申请 文献类型号 B
独权数量 1 从权数量 1
权利要求数量 2 非专利引证数量 0
引用专利数量 6 被引证专利数量 0
非专利引证
引用专利 CN210457726U、CN105887227A、CN104577062A、CN103232035A、CN109287658A、CN106757483A 被引证专利
专利权维持 2 专利申请国编码 CN
专利事件 转让 事务标签 公开、实质审查、授权、权利转移
申请人信息
申请人 第一申请人
专利权人 扬州工业职业技术学院 当前专利权人 江苏鑫林环保设备有限公司
发明人 杨瑞洪 第一发明人 杨瑞洪
地址 江苏省扬州市邗江区华扬西路199号 邮编 225000
申请人数量 1 发明人数量 1
申请人所在省 江苏省 申请人所在市 江苏省扬州市
代理人信息
代理机构
专利代理机构是经省专利管理局审核,国家知识产权局批准设立,可以接受委托人的委托,在委托权限范围内以委托人的名义办理专利申请或其他专利事务的服务机构。
南京苏科专利代理有限责任公司 代理人
专利代理师是代理他人进行专利申请和办理其他专利事务,取得一定资格的人。
陈栋智
摘要
本发明公开了一种载银活性炭抗菌纤维膜的制备方法,包括以下步骤:步骤1)抗菌载银活性炭制备:将活性炭浸泡在AgNO3溶液中,选取反絮凝剂,溶解于AgNO3溶液中,然后将葡萄糖溶液缓慢滴加到在搅拌状态的AgNO3溶液中,水浴加热,并磁力搅拌,再将产物过滤,水洗,除去葡萄糖,直到完全去除Ag+,再真空干燥,最后将产物在鼓风烘箱中干燥,再在管式炉中氮气氛围500°高温灼烧,得到载银活性炭;步骤2)纺丝液制备:将聚丙烯腈溶于一定体积的N,N‑二甲基甲酰胺溶液中,加热,磁力搅拌,得到纺丝液,再将载银活性炭加入纺丝液中,封闭后磁力搅拌8h,得到抗菌纺丝液;步骤3)纺丝:利用静电纺丝装置进行纺丝,本发明使得纤维膜具有较好的抗菌性。
  • 摘要附图
    一种载银活性炭抗菌纤维膜的制备方法
  • 说明书附图:图1
    一种载银活性炭抗菌纤维膜的制备方法
  • 说明书附图:图2
    一种载银活性炭抗菌纤维膜的制备方法
  • 说明书附图:图3
    一种载银活性炭抗菌纤维膜的制备方法
  • 说明书附图:图4
    一种载银活性炭抗菌纤维膜的制备方法
  • 说明书附图:图5
    一种载银活性炭抗菌纤维膜的制备方法
法律状态
序号 法律状态公告日 法律状态 法律状态信息
1 2022-06-03 专利权的转移 登记生效日: 2022.05.23 专利权人由扬州工业职业技术学院变更为江苏鑫林环保设备有限公司 地址由225000 江苏省扬州市邗江区华扬西路199号变更为214201 江苏省无锡市宜兴市高塍镇西街163号
2 2021-08-31 授权
3 2020-11-27 实质审查的生效 IPC(主分类): D04H 1/728 专利申请号: 202010817183.1 申请日: 2020.08.14
4 2020-11-10 公开
权利要求
权利要求书是申请文件最核心的部分,是申请人向国家申请保护他的发明创造及划定保护范围的文件。
1.一种载银活性炭抗菌纤维膜的制备方法,其特征在于,包括以下步骤:
步骤1)抗菌载银活性炭制备:称取一定量的活性炭,浸泡在AgNO3溶液中,选取反絮凝剂,在超声波条件下溶解于AgNO3溶液中,然后将葡萄糖溶液缓慢滴加到在搅拌状态的AgNO3溶液中,水浴加热,并磁力搅拌,再将产物过滤,多次水洗,除去多余的葡萄糖,直到完全去除Ag+,再真空干燥,最后将产物在鼓风烘箱中干燥,再在管式炉中氮气氛围500℃高温灼烧,得到载银活性炭;
AgNO3溶液浓度为0.08mol/L,所述反絮凝剂选用磷酸盐,按照反絮凝剂:银离子质量比为(0.2 1):1比例称取一定量的反絮凝剂,通过60℃水浴加热,磁力搅拌24h,在70℃真空干~
燥8h,在鼓风烘箱中70℃下干燥2h;
步骤2)纺丝液制备:将聚丙烯腈溶于一定体积的N,N‑二甲基甲酰胺溶液中,40±2℃下加热,磁力搅拌12±1h,得到质量分数10‑15%的纺丝液,再将占聚丙烯腈质量4‑6%的抗菌载银活性炭加入纺丝液中,封闭后磁力搅拌8±1h,得到抗菌纺丝液;
步骤3)纺丝:按照顺序安装好静电纺丝装置,在接收板上先铺上一层铝膜,并固定,在铝膜上另铺设一层无纺布,紧密贴合铝膜,并固定,用注射器每次吸取45%‑55%容量的抗菌纺丝液进行纺丝,纺丝完成后,从接收板上取下铝膜,再将铝膜取下,将无纺布和纤维膜作为一体,置于真空干燥箱中40±2℃温度下干燥8±1h,取下无纺布得到纤维膜。

2.根据权利要求1所述的一种载银活性炭抗菌纤维膜的制备方法,其特征在于,步骤1)中高温灼烧的具体升温程序为:室温升至120℃,停留30min,升温至300℃,停留60min,升温至500℃,停留120min,降温。
说明书

技术领域

[0001] 本发明涉及一种纤维膜,特别涉及一种载银活性炭抗菌纤维膜的制备方法。

背景技术

[0002] 安全可靠的饮用水供应对保障人民健康和经济发展具有重要意义,供水企业必须实行从水源到用户的全过程管理,特别是管网供水阶段,保障最终用户得到安全优质的饮用水。尽管出厂水通过加氯消毒,大量微生物已经被杀死,甚至维持管网水含有一定余氯量以继续保持消毒作用,用水终端还是会出现细菌学指标合格率明显下降的问题。最新研究和行业应用结果表明,常规的氯消毒工艺、接触氧化除铁除锰和氯化消毒工艺以及混凝、沉淀、过滤和氯消毒工艺等方法不能有效去除水中微生物。
[0003] 聚丙烯腈(PAN)是一种良好的膜分离材料,已经广泛应用于膜水分离和膜气分离领域,相比较聚偏氟乙烯、聚醚砜、聚乙烯膜等其他常用的膜材料,PAN膜的机械强度更好,亲水性高,膜污染程度降低,并且已成熟工业化生产。静电纺丝制备纤维膜的成膜方式是通过在高压的电场中纺丝液在喷头处形成泰勒锥,纤维丝在接收装置上层层堆叠成膜,空隙率高,膜比表面积大,过膜压力小,水通量大等优点,但同时也存在膜机械性能较差的问题。

发明内容

[0004] 本发明的目的是提供一种载银活性炭抗菌纤维膜的制备方法,使得纤维膜具有较好的抗菌性。
[0005] 本发明的目的是这样实现的:一种载银活性炭抗菌纤维膜的制备方法,包括以下步骤:
[0006] 步骤1)抗菌载银活性炭制备:称取一定量的活性炭,浸泡在AgNO3溶液中,选取反絮凝剂,在超声波条件下溶解于AgNO3溶液中,然后将葡萄糖溶液缓慢滴加到在搅拌状态的AgNO3溶液中,水浴加热,并磁力搅拌,再将产物过滤,多次水洗,除去多余的葡萄糖,直到完全去除Ag+,再真空干燥,最后将产物在鼓风烘箱中干燥,再在管式炉中氮气氛围500°高温灼烧,得到载银活性炭;
[0007] 步骤2)纺丝液制备:将聚丙烯腈溶于一定体积的N,N‑二甲基甲酰胺溶液中,40±2℃下加热,磁力搅拌12±1h,得到质量分数10‑15%的纺丝液,再将占聚丙烯腈质量4‑6%的载银活性炭加入纺丝液中,封闭后磁力搅拌8±1h,得到抗菌纺丝液;
[0008] 步骤3)纺丝:按照顺序安装好静电纺丝装置,在接收板上先铺上一层铝膜,并固定,在铝膜上另铺设一层无纺布,紧密贴合铝膜,并固定,用注射器每次吸取45%‑55%容量的抗菌纺丝液进行纺丝,纺丝完成后,从接收板上取下铝膜,再将铝膜取下,将无纺布和纤维膜作为一体,置于真空干燥箱中40±2℃温度下干燥8±1h,取下无纺布得到纤维膜。
[0009] 作为本发明的进一步限定,步骤1)中AgNO3溶液浓度为0.08mol/L,所述反絮凝剂选用磷酸盐,按照反絮凝剂:银离子质量比为(0.2 1):1比例称取一定量的反絮凝剂,通过~60℃水浴加热,磁力搅拌24h,在70℃真空干燥8h,在鼓风烘箱中70℃下干燥2h。
[0010] 作为本发明的进一步限定,步骤1)中高温灼烧的具体升温程序为:室温升至120℃,停留30min,升温至300℃,停留60min,升温至500℃,停留120min,降温。
[0011] 与现有技术相比,本发明的有益效果在于:本发明通过在活性炭的制备过程中加入防絮凝剂作为缓冲溶液,由于抗絮凝剂多为一些表面带有电荷的离子或者原子团,银颗粒表面吸附这些带电的基团,晶体表面产生库伦斥力从而相互排斥,获得分散效果好的银颗粒;选用磷酸盐作为抗絮凝剂具有较好的耐火性能,在后期进行高温灼烧时,避免其受高温影响从而导致银离子流失;从而避免了银离子团聚,进一步提高抗菌性;同时,通过物理式改变活性炭的内部结构,将活性炭进行高温气氛处理,改变内部孔容以及孔道结构,来增加活性炭的载银量,从而进一步增强活性炭的抗菌性能;通过如此升温设计避免急速高温对产品结构造成破坏,最终制得抗菌性较好的活性炭,再将活性炭加入纤维膜制备中,从而提高了纤维膜的抗菌性能。

实施方案

[0017] 下面结合具体实施例对本发明做进一步说明。
[0018] 实施例1
[0019] 如图1所示的一种抗菌载银活性炭的制备方法,包括以下步骤:
[0020] 步骤1)抗菌载银活性炭制备:称取一定量的活性炭,浸泡在浓度为0.08mol/L的AgNO3溶液中;选取磷酸盐作为反絮凝剂,按照反絮凝剂:银离子质量比为0.2:1比例称取一定量的反絮凝剂,在超声波条件下溶解于AgNO3溶液中;然后将葡萄糖溶液缓慢滴加到在搅拌状态的AgNO3溶液中,60℃水浴加热,磁力搅拌24h;将产物过滤,多次水洗,除去多余的葡萄糖,直到完全去除Ag+,再在70℃真空干燥8h;再产物在鼓风烘箱中70℃下干燥2h,再在管式炉中氮气氛围高温灼烧,具体升温程序为:室温升至120℃,停留30min,升温至300℃,停留60min,升温至500℃,停留120min,降温,得到产品;
[0021] 步骤2)纺丝液制备:将聚丙烯腈溶于一定体积的N,N‑二甲基甲酰胺溶液中,40℃下加热,磁力搅拌12h,得到质量分数10%的纺丝液,再将占聚丙烯腈质量4%的载银活性炭加入纺丝液中,封闭后磁力搅拌8h,得到抗菌纺丝液;
[0022] 步骤3)纺丝:按照顺序安装好静电纺丝装置,在接收板上先铺上一层铝膜,并固定,在铝膜上另铺设一层无纺布,紧密贴合铝膜,并固定,用注射器每次吸取45%容量的抗菌纺丝液进行纺丝,纺丝完成后,从接收板上取下铝膜,再将铝膜取下,将无纺布和纤维膜作为一体,置于真空干燥箱中40℃温度下干燥8h,取下无纺布得到纤维膜。
[0023] 实施例2
[0024] 如图1所示的一种抗菌载银活性炭的制备方法,包括以下步骤:
[0025] 步骤1)抗菌载银活性炭制备:称取一定量的活性炭,浸泡在浓度为0.08mol/L的AgNO3溶液中;选取磷酸盐作为反絮凝剂,按照反絮凝剂:银离子质量比为0.5:1比例称取一定量的反絮凝剂,在超声波条件下溶解于AgNO3溶液中;然后将葡萄糖溶液缓慢滴加到在搅拌状态的AgNO3溶液中,60℃水浴加热,磁力搅拌24h;将产物过滤,多次水洗,除去多余的葡萄糖,直到完全去除Ag+,再在70℃真空干燥8h;再产物在鼓风烘箱中70℃下干燥2h,再在管式炉中氮气氛围高温灼烧,具体升温程序为:室温升至120℃,停留30min,升温至300℃,停留60min,升温至500℃,停留120min,降温,得到产品;
[0026] 步骤2)纺丝液制备:将聚丙烯腈溶于一定体积的N,N‑二甲基甲酰胺溶液中,40℃下加热,磁力搅拌12h,得到质量分数13%的纺丝液,再将占聚丙烯腈质量5%的载银活性炭加入纺丝液中,封闭后磁力搅拌8h,得到抗菌纺丝液;
[0027] 步骤3)纺丝:按照顺序安装好静电纺丝装置,在接收板上先铺上一层铝膜,并固定,在铝膜上另铺设一层无纺布,紧密贴合铝膜,并固定,用注射器每次吸取50%容量的抗菌纺丝液进行纺丝,纺丝完成后,从接收板上取下铝膜,再将铝膜取下,将无纺布和纤维膜作为一体,置于真空干燥箱中40℃温度下干燥8h,取下无纺布得到纤维膜。
[0028] 实施例3
[0029] 如图1所示的一种抗菌载银活性炭的制备方法,包括以下步骤:
[0030] 步骤1)抗菌载银活性炭制备:称取一定量的活性炭,浸泡在浓度为0.08mol/L的AgNO3溶液中;选取磷酸盐作为反絮凝剂,按照反絮凝剂:银离子质量比为1:1比例称取一定量的反絮凝剂,在超声波条件下溶解于AgNO3溶液中;然后将葡萄糖溶液缓慢滴加到在搅拌状态的AgNO3溶液中,60℃水浴加热,磁力搅拌24h;将产物过滤,多次水洗,除去多余的葡萄糖,直到完全去除Ag+,再在70℃真空干燥8h;再产物在鼓风烘箱中70℃下干燥2h,再在管式炉中氮气氛围高温灼烧,具体升温程序为:室温升至120℃,停留30min,升温至300℃,停留60min,升温至500℃,停留120min,降温,得到产品;
[0031] 步骤2)纺丝液制备:将聚丙烯腈溶于一定体积的N,N‑二甲基甲酰胺溶液中,40℃下加热,磁力搅拌12h,得到质量分数15%的纺丝液,再将占聚丙烯腈质量6%的载银活性炭加入纺丝液中,封闭后磁力搅拌8h,得到抗菌纺丝液;
[0032] 步骤3)纺丝:按照顺序安装好静电纺丝装置,在接收板上先铺上一层铝膜,并固定,在铝膜上另铺设一层无纺布,紧密贴合铝膜,并固定,用注射器每次吸取55%容量的抗菌纺丝液进行纺丝,纺丝完成后,从接收板上取下铝膜,再将铝膜取下,将无纺布和纤维膜作为一体,置于真空干燥箱中40℃温度下干燥8h,取下无纺布得到纤维膜。
[0033] 对比例
[0034] 现有的常规PAN纤维膜。
[0035] 下面针对上述三个实施例和对比例的纤维膜结合各自的纯水通量、抗生物污染性指标;以及抑菌圈法和细菌截留实验检验各自的抗菌性能,来分析本发明产品性能。
[0036] 1.纯水通量、抗生物污染性测试
[0037] 水通量是指在一定的温度和过滤压力下,单位时间内单位面积的过滤膜通过的纯水体积量,是评价过滤膜性能的重要指标之一,能在一定程度反应膜结构的致密性;本次实验中,为了保证结果的稳定性,在过滤膜出水20min后,再开始实验,各纤维膜材料测三组结果,取其平均值;结果如图2所示;水通量恢复率是纤维膜重要指标之一,反映了膜耐不可逆污染的能力,如图3所示为纤维膜在过滤牛血清蛋白后的水通量恢复率。由图可知抗菌材料的加入能显著提高膜的水通量恢复率,增强膜的耐污性能,其中以实施例2的纤维膜水通量恢复率最高,达到89.34%,相比较原膜的42.18%,耐污能力提高了一倍多,说明实施例2的纤维膜抗生物污染能力得到增强。原因是掺杂了颗粒状抗菌材料的纤维膜表面性质发生了改变,高分子蛋白质很难透过空隙渗透膜内部,在膜表面发生聚集,因此反冲洗时易于去除。实施例3的纤维膜水通量恢复率也大于原膜,达到82.24%。综合来看,抗菌材料的加入能有效的提高纤维膜的抗生物污染性能,减轻膜堵塞程度,降低膜污染进而增强膜寿命。
[0038] 综上,四种纤维膜中实施例2纤维膜水通量最大,达到6949.36L/(m2·h),原膜水2 2
通量最低4121.89L/(m·h),实施例1、实施例3纤维膜,其水通量为5440.83L(/m·h)及
2
5019.71L/(m·h);膜通量恢复率实验表明,相比较原膜,抗菌复合纤维膜的水通量恢复率明显提高,膜耐污性提高,实施例2纤维膜水通量恢复率最高,达到89.34%,相比原膜,耐污能力提高一倍多。
[0039] 2.纤维膜抗生物污染性测试
[0040] 抑菌圈法测定抗菌性:实验开始前,将四种纤维膜剪成直径为15mm的圆形,在干净的超净工作台上紫外灯照射下处理20min,除去膜表面的细菌微生物;其结果如图4所示;
[0041] 细菌截留实验:为了更好的模拟四种抗菌纤维膜对水中细菌微生物的去除效果,在实验室里配置含微生物水体:将去离子水置于烧杯中,加入少量处于菌悬液状态下的大肠杆菌,混合均匀,反复通过滤膜3次,用平板计数法培养1mL滤前液和滤后液中大肠杆菌的数量;LB液体培养基的配置:称取10g胰蛋白胨,5g酵母提取物,10gNaCl,置于大烧杯中,加入去离子水,用玻璃杯搅拌至完全溶解,溶液均一透明;用NaOH调节培养基的pH至7.0,之后用去离子水将溶液定容至1L,用锡箔纸封口置于高压蒸汽灭菌锅中高压灭菌。平板计数法:取1mL过滤后的水样于制备好的平板中央,涂布器均匀转动,水样均匀的平布在琼脂平板培养基上;于37℃恒温培养箱培养12h;其结果如图5所示。
[0042] 综上,在探究膜的抗菌性能实验中,抑菌圈实验中,PAN纤维膜对大肠杆菌的生长没有抑制功能,膜周围未出现抑菌圈,对于载银活性炭纤维膜,其抗菌能力对比为:实施例1的纤维膜和实施例2的纤维膜近似相等,实施例2的纤维膜最低,说明活性炭材料在经过合适的高温处理后,其抗菌能力并没有下降。模拟含微生物配水的细菌截留率实验中证明通过静电纺丝制备出的载银活性炭复合纤维膜具有较强的抗菌效果,能有效去除水中细菌微生物,其中实施例2的纤维膜去除效果最好。
[0043] 本发明并不局限于上述实施例,在本发明公开的技术方案的基础上,本领域的技术人员根据所公开的技术内容,不需要创造性的劳动就可以对其中的一些技术特征作出一些替换和变形,这些替换和变形均在本发明的保护范围内。

附图说明

[0012] 图1为本发明流程图。
[0013] 图2为本发明纯水通量实验图。
[0014] 图3为本发明抗生物污染性实验图。
[0015] 图4为本发明纤维膜抑菌圈实验图,其中A图PAN纤维膜,B图是实施例1的纤维膜,C图是实施例2的纤维膜,D图是实施例3的纤维膜。
[0016] 图5为本发明过滤膜后1ml水样经平板培养菌落数,其中A是原始水样,B是过PAN膜水样,C是实施例1膜水样,D是实施例2膜水样,E是实施例3膜水样。
专利联系人(活跃度排行)
版权所有:盲专网 ©2023 zlpt.xyz  蜀ICP备2023003576号