首页 > 专利 > 杭州电子科技大学 > 一种检测四环素用适配体传感器及其制备方法、应用专利详情

一种检测四环素用适配体传感器及其制备方法、应用   0    0

有效专利 查看PDF
专利申请流程有哪些步骤?
专利申请流程图
申请
申请号:指国家知识产权局受理一件专利申请时给予该专利申请的一个标示号码。唯一性原则。
申请日:提出专利申请之日。
2020-12-09
申请公布
申请公布指发明专利申请经初步审查合格后,自申请日(或优先权日)起18个月期满时的公布或根据申请人的请求提前进行的公布。
申请公布号:专利申请过程中,在尚未取得专利授权之前,国家专利局《专利公报》公开专利时的编号。
申请公布日:申请公开的日期,即在专利公报上予以公开的日期。
2021-03-19
授权
授权指对发明专利申请经实质审查没有发现驳回理由,授予发明专利权;或对实用新型或外观设计专利申请经初步审查没有发现驳回理由,授予实用新型专利权或外观设计专利权。
2022-11-18
预估到期
发明专利权的期限为二十年,实用新型专利权期限为十年,外观设计专利权期限为十五年,均自申请日起计算。专利届满后法律终止保护。
2040-12-09
基本信息
有效性 有效专利 专利类型 发明专利
申请号 CN202011426837.4 申请日 2020-12-09
公开/公告号 CN112432983B 公开/公告日 2022-11-18
授权日 2022-11-18 预估到期日 2040-12-09
申请年 2020年 公开/公告年 2022年
缴费截止日
分类号 G01N27/327 主分类号 G01N27/327
是否联合申请 独立申请 文献类型号 B
独权数量 1 从权数量 9
权利要求数量 10 非专利引证数量 0
引用专利数量 1 被引证专利数量 0
非专利引证
引用专利 US2007034529A1 被引证专利
专利权维持 2 专利申请国编码 CN
专利事件 事务标签 公开、实质审查、授权
申请人信息
申请人 第一申请人
专利权人 杭州电子科技大学 当前专利权人 杭州电子科技大学
发明人 傅力、周卿伟 第一发明人 傅力
地址 浙江省杭州市经济技术开发区白杨街道2号大街1158号 邮编 310018
申请人数量 1 发明人数量 2
申请人所在省 浙江省 申请人所在市 浙江省杭州市
代理人信息
代理机构
专利代理机构是经省专利管理局审核,国家知识产权局批准设立,可以接受委托人的委托,在委托权限范围内以委托人的名义办理专利申请或其他专利事务的服务机构。
浙江千克知识产权代理有限公司 代理人
专利代理师是代理他人进行专利申请和办理其他专利事务,取得一定资格的人。
周希良
摘要
本发明涉及一种检测四环素用适配体传感器的制备方法,包括以下步骤:(1)将工作电极置于NaOH溶液中进行CV扫描;(2)经过步骤(1)处理后的工作电极置于磁性纳米粒子悬浮液中目标时长后进行CV扫描,得到MNP/PGE电极;(3)将MNP/PGE电极置于HAuCl4·3H2O溶液中进行CV扫描,得到GNP/MNP/PGE电极;(4)将GNP/MNP/PGE电极浸没至KNO3溶液中进行CV扫描;(5)将经过步骤(4)处理后的GNP/MNP/PGE电极浸泡在适配体试剂中以固定适配体,然后洗涤、干燥,得到检测四环素用适配体传感器。本发明的适配体传感器可以快速、灵敏地检测牛奶样品中的TET。
  • 摘要附图
    一种检测四环素用适配体传感器及其制备方法、应用
  • 说明书附图:图1
    一种检测四环素用适配体传感器及其制备方法、应用
法律状态
序号 法律状态公告日 法律状态 法律状态信息
1 2022-11-18 授权
2 2021-03-19 实质审查的生效 IPC(主分类): G01N 27/327 专利申请号: 202011426837.4 申请日: 2020.12.09
3 2021-03-02 公开
权利要求
权利要求书是申请文件最核心的部分,是申请人向国家申请保护他的发明创造及划定保护范围的文件。
1.一种检测四环素用适配体传感器的制备方法,其特征在于,以PGE电极作为工作电
4‑
极、Ag/AgCl作为参考电极、铂丝作为对电极,应用于CV扫描;其中,KCl溶液与Fe(CN)6 或Fe
3‑
(CN)6 溶液的混合液用作CV扫描的氧化还原探针;所述制备方法包括以下步骤:
(1)将工作电极置于NaOH溶液中进行CV扫描;
(2)经过步骤(1)处理后的工作电极置于磁性纳米粒子悬浮液中目标时长后进行CV扫描,得到MNP/PGE电极;
(3)将MNP/PGE电极置于HAuCl4·3H2O溶液中进行CV扫描,得到GNP/MNP/PGE电极;
(4)将GNP/MNP/PGE电极浸没至KNO3溶液中进行CV扫描;
(5)将经过步骤(4)处理后的GNP/MNP/PGE电极浸泡在适配体试剂中以固定适配体,然后洗涤、干燥,得到检测四环素用适配体传感器;
其中,所述适配体试剂的制备如下:将39‑聚硫醇化TET结合适配体与寡核苷酸的水溶液混合得到混合液,然后向混合液中添加DTT静置,最后添加乙酸乙酯以去除DTT,离心去除上层清液,得到适配体试剂。

2.根据权利要求1所述的一种检测四环素用适配体传感器的制备方法,其特征在于,所述39‑聚硫醇化TET结合适配体的序列为(5’‑SH‑CCC CCG GCA GGC CAC GGC TTG GGT TGG TCC CAC TGC GCG‑3’),光密度为13.7。

3.根据权利要求1所述的一种检测四环素用适配体传感器的制备方法,其特征在于,所述混合液与DTT的体积比为5:1,静置的时间为10~30分钟。

4.根据权利要求1所述的一种检测四环素用适配体传感器的制备方法,其特征在于,所
4‑ 3‑
述KCl溶液的浓度为0.05~0.2M,Fe(CN)6 或Fe(CN)6 溶液的浓度为2.0~7.0mM。

5.根据权利要求1所述的一种检测四环素用适配体传感器的制备方法,其特征在于,所述步骤(1)中,NaOH溶液的为0.5~2M,CV扫描的电势从0~+1.5V,扫描速率为10~60mV/s。

6.根据权利要求1所述的一种检测四环素用适配体传感器的制备方法,其特征在于,所述步骤(2)中,目标时长为20~80分钟,在‑0.20~+0.70V下进行CV扫描。

7.根据权利要求1所述的一种检测四环素用适配体传感器的制备方法,其特征在于,所述步骤(3)中,HAuCl4·3H2O溶液的浓度为1.0~5.0mM,以1~8mV/s的扫描速率从‑0.50~+
1.50V进行CV扫描。

8.根据权利要求1所述的一种检测四环素用适配体传感器的制备方法,其特征在于,所述步骤(4)中,KNO3溶液的浓度为0.05~0.2M,在‑0.50~+1.50V下进行CV扫描。

9.如权利要求1‑8任一项所述制备方法制得的适配体传感器。

10.如权利要求9所述适配体传感器的应用,其特征在于,用于牛奶中四环素含量的检测。
说明书

技术领域

[0001] 本发明属于电化学适配体传感器技术领域,具体涉及一种检测四环素用适配体传感器及其制备方法、应用。

背景技术

[0002] 抗生素在传染病的治疗中具有广泛的应用,同时也被用作牲畜的生长因子。兽药中抗生素的不当使用和过度使用,导致肉、牛奶和蛋等食物链中残留的抗生素含量受到限制,并导致抗生素耐药性增加。过量使用抗生素会对消费者构成重大风险,包括治疗费用增加。
[0003] 四环素(TET)是最常规的抗生素之一,在兽医和乳腺炎等牲畜的传染病治疗中得到广泛应用。到目前为止,已经尝试了多种方法来鉴定各种食品中的TET,例如:高效液相色谱(HPLC)、酶联免疫吸附测定、微生物法、比色法和质谱法等。尽管这些方法精确、灵敏,但较为昂贵,且费时,并且需要庞大且复杂的设备、专业的用户以及制备用于测试的样品具有复杂性。近年来,为了应对上述方法的局限性,适配体传感器的设计和实现受到了广泛的关注,适配体传感器是一种精确、灵敏、便携和快速的工具。
[0004] 适配体是人工的单链DNA或RNA分子,具有许多独特的优势,例如易于接近、单个3D结构、高度稳定、良好的连接性以及固有的特异性。因此,适配体似乎是电化学适配体传感器应用的理想选择。
[0005] 近年来,使用纳米材料改善适配体传感器的响应受到了广泛关注。这些材料包括磁性纳米粒子(MNP)、石墨烯、银和金纳米粒子(GNP)。由于其特殊的特性,例如超顺磁性、高比表面积和低毒性,MNP受到了研究人员的极大关注。
[0006] 在不同的纳米材料中,GNP由于具有理想的生物相容性、易于电子转移的过程、较高的化学稳定性、优异的电导率以及与生物分子的高度连接性而具有独特的性能。结合MNP和GNP作为纳米复合材料,可以增加电子转移过程,并提供更多的自组装位点来连接适配体链。

发明内容

[0007] 基于现有技术中存在的上述不足,本发明的目的之一是至少解决现有技术中存在的上述问题之一或多个,换言之,本发明的目的之一是提供满足前述需求之一或多个的一种检测四环素用适配体传感器及其制备方法、应用。
[0008] 为了达到上述发明目的,本发明采用以下技术方案:
[0009] 一种检测四环素用适配体传感器的制备方法,以PGE电极作为工作电极、Ag/AgCl4‑ 3‑
作为参考电极、铂丝作为对电极,应用于CV扫描;其中,KCl溶液与Fe(CN)6 或Fe(CN)6 溶液的混合液用作CV扫描的氧化还原探针;所述制备方法包括以下步骤:
[0010] (1)将工作电极置于NaOH溶液中进行CV扫描;
[0011] (2)经过步骤(1)处理后的工作电极置于磁性纳米粒子悬浮液中目标时长后进行CV扫描,得到MNP/PGE电极;
[0012] (3)将MNP/PGE电极置于HAuCl4·3H2O溶液中进行CV扫描,得到GNP/MNP/PGE电极;
[0013] (4)将GNP/MNP/PGE电极浸没至KNO3溶液中进行CV扫描;
[0014] (5)将经过步骤(4)处理后的GNP/MNP/PGE电极浸泡在适配体试剂中以固定适配体,然后洗涤、干燥,得到检测四环素用适配体传感器;
[0015] 其中,所述适配体试剂的制备如下:将39‑聚硫醇化TET结合适配体与寡核苷酸的水溶液混合得到混合液,然后向混合液中添加DTT静置,最后添加乙酸乙酯以去除DTT,离心去除上层清液,得到适配体试剂。
[0016] 作为优选方案,所述39‑聚硫醇化TET结合适配体的序列为(5’‑SH‑CCC CCG GCA GGC CAC GGC TTG GGT TGG TCC CAC TGC GCG‑3’),光密度为13.7。
[0017] 作为优选方案,所述混合液与DTT的体积比为5:1,静置的时间为10~30分钟。
[0018] 作为优选方案,所述KCl溶液的浓度为0.05~0.2M,Fe(CN)64‑或Fe(CN)63‑溶液的浓度为2.0~7.0mM。
[0019] 作为优选方案,所述步骤(1)中,NaOH溶液的为0.5~2M,CV扫描的电势从0~+1.5V,扫描速率为10~60mV/s。
[0020] 作为优选方案,所述步骤(2)中,目标时长为20~80分钟,在‑0.20~+0.70V下进行CV扫描。
[0021] 作为优选方案,所述步骤(3)中,HAuCl4·3H2O溶液的浓度为1.0~5.0mM,以1~8mV/s的扫描速率从‑0.50~+1.50V进行CV扫描。
[0022] 作为优选方案,所述步骤(4)中,KNO3溶液的浓度为0.05~0.2M,在‑0.50~+1.50V下进行CV扫描。
[0023] 本发明还提供如上任一方案所述制备方法制得的适配体传感器。
[0024] 本发明还提供如上方案所述适配体传感器的应用,用于牛奶中四环素含量的检测。
[0025] 本发明与现有技术相比,有益效果是:
[0026] 本发明开发了基于GNP/MNP纳米复合材料的无标记阻抗适配体传感器,用于快速、灵敏地检测牛奶样品中的TET,还可以用来检测各种食品、药物和血清样品中的其他抗生素。

实施方案

[0028] 以下通过具体实施例对本发明的技术方案作进一步解释说明。
[0029] 实施例1:
[0030] 本实施例的检测四环素用适配体传感器的制备方法,包括以下步骤:
[0031] (1)适配体试剂的制备(简称适体)
[0032] 以39‑聚硫醇化TET结合适配体作为探针,序列为(5’‑SH‑CCC CCG GCA GGC CAC GGC TTG GGT TGG TCC CAC TGC GCG‑3’),光密度为13.7,高效液相色谱纯化;然后使用水将寡核苷酸稀释后,与39‑聚硫醇化TET结合适配体混合作为储备溶液保存在冰箱中(‑20℃);另外,冰箱的温度可以在‑10~‑30℃之间任意选取。
[0033] 为了打破适配体的二硫键,在上述储备溶液中加入体积比为1:5的DTT。在室温下静置保存15分钟;
[0034] 将保存溶液混合几秒钟后,将乙酸乙酯与等体积的保存溶液混合,以去除DTT;然后,3000rpm离心30s,去除上层,得到适配体试剂。其中,离心转速为1000~4000rpm,时间为10~60s;离心过程重复三次。
[0035] (2)检测四环素用适配体传感器的制备
[0036] 电化学测量为传统的三电极系统,包括:PGE电极作为工作电极,Ag/AgCl作为参考电极,以及铂丝作为对电极,应用于电化学测量。
[0037] 将带有0.1M KCl溶液的5.0mM Fe(CN)64‑溶液用作CV和EIS测量的氧化还原探针。
[0038] 如图1所示,PGE电极在NaOH溶液中具有活性,将其在1M NaOH溶液中从0~+1.5V扫描,扫描速率为40mV/s,扫描周期为10个周期,得到改良的PGE电极。
[0039] 为了在处理过的PGE表面上固定MNP,在室温下将工作电极置于MNP悬液中(60min),并在‑0.20~+0.70V下进行CV扫描,10个循环,得到MNP/PGE电极;
[0040] 然后,用电晕电化学方法将GNP固定在MNP/PGE电极表面。为此,在3.0mM HAuCl4·3H2O溶液中,以5mV/s的扫描速率从‑0.50~+1.50V进行CV扫描;然后,将电极浸入到0.1M KNO3中,并在‑0.50~+1.50V的电势下运行CV,循环数为10,得到GNP/MNP/PGE电极。
[0041] 硫代适配体在GNP/MNP/PGE上自组装:将GNP/MNP/PGE电极浸泡在适配体试剂中,在室温下固定适配体,然后用去离子水缓慢洗涤,以消除电极表面的无限适配体链,并在室温下干燥,得到适配体传感器。
[0042] 本实施例的适配体传感器的应用,具体如下:
[0043] (1)为了评估适配体传感器的性能,选择了四个牛奶样品,包括牛、绵羊、山羊和水牛的牛奶,并将其用作真实样品。
[0044] (2)将适配体传感器浸入TET溶液中以进行TET检测,然后将其用去离子水洗涤以除去未吸附的抗生素。其中,浸入时间为60~120分钟。
[0045] (3)在具有KCl溶液的Fe(CN)64‑中运行电化学阻抗谱(EIS),将适配体传感器的Rct4‑
值用作信号。其中,KCl溶液的浓度为0.05~0.2M,Fe(CN)6 溶液的浓度为2.0~7.0mM。
[0046] (4)为了研究适配体传感器的适用性,制备了各种浓度水平的TET。其中,TET浓度为1.0pM至1.0μM。
[0047] (5)为了绘制使用ΔRct对TET的不同对数浓度绘制的校准曲线,使用了EIS信号。所有实验至少进行三个重复。
[0048] (6)检测适配体传感器在各种牛奶样品中的TET检测。在样品测试之前,首先使用磷酸盐缓冲溶液稀释每个样品,并离心混合。其中,样品与磷酸盐缓冲溶液稀释的体积比为1:10,样品重量为0.5~3.0g,离心转速为9000~12000rpm,混合时间为10~40s。
[0049] (7)将溶液离心以去除蛋白质和脂肪,为了进样不同水平的TET并研究真实样品中的适配体性能,中间层被保存为纯牛奶。其中,离心转速为20000~28000rpm,离心时间为10~60分钟。
[0050] (8)将适配体传感器浸入牛奶溶液中以进行TET检测。
[0051] 具体地,本实施例的适配体传感器用于检测牛奶样品中的TET,具体如下:
[0052] 将适配体传感器浸入TET溶液中90分钟以进行TET检测;然后用去离子水洗涤以除4‑
去未吸附的抗生素;之后,在具有0.1M KCl溶液的5.0mM Fe(CN)6 中运行EIS;将适配体传感器的Rct值用作信号;为了研究适配体传感器的适用性,制备了1.0pM至1.0μM的各种浓度水平的TET。为了绘制使用ΔRct对TET的不同对数浓度绘制的校准曲线,使用了EIS信号。
[0053] 所有实验至少进行三个重复。
[0054] 适配体传感器检测牛奶样品中的TET。
[0055] 在样品测试之前,首先使用磷酸盐缓冲溶液以体积比1:10的比例稀释2.0g的牛奶样品,并以10800rpm的转速混合25s;
[0056] 将混合后的溶液以24000rpm离心30分钟以去除蛋白质和脂肪。
[0057] 为了研究不同水平的TET并研究真实样品中的适配体性能,中间层被保存为纯牛奶。将适配体传感器浸入牛奶溶液中以进行TET检测。
[0058] 本实施例还将适配体传感器应用于绵羊奶、山羊奶和水牛奶中的TET检测,步骤同上,具体数据如表1所示,回收率均在94%至103%的范围内,在适配体传感器的可接受范围内。
[0059] 表1适配体传感器在不同奶样品中TET的检测回收率和偏差
[0060]
[0061] 本实施例通过EIS方法,可实现0.03pM TET的低LOD。提出的适配体传感器具有可接受的重现性、稳定性和良好的选择性。
[0062] 作为上述实施例及其替代方案,Fe(CN)64‑还可以为Fe(CN)63‑。
[0063] 作为上述实施例及其替代方案,储备溶液与DTT的混合静置时间还可以为10分钟、20分钟、25分钟、30分钟等。
[0064] 作为上述实施例及其替代方案,KCl溶液的浓度还可以为0.05M、0.15M、0.2M等,Fe4‑
(CN)6 溶液的浓度还可以为2.0mM、3.0mM、6.0mM、7.0mM等。
[0065] 作为上述实施例及其替代方案,NaOH溶液对应的CV扫描参数中,NaOH溶液的浓度还可以为0.5M、1.5M、2M等,CV扫描的电势从0~+1.5V,扫描速率还可以为10mV/s、30mV/s、50mV/s、60mV/s等。
[0066] 作为上述实施例及其替代方案,工作电极置于磁性纳米粒子悬浮液中的目标时长还可以为20分钟、40分钟、50分钟、80分钟等。
[0067] 作为上述实施例及其替代方案,HAuCl4·3H2O溶液对应的CV扫描参数中,HAuCl4·3H2O溶液的浓度还可以为1M、2.5M、5M等,扫描速率还可以为1mV/s、3mV/s、6mV/s、8mV/s等。
[0068] 作为上述实施例及其替代方案,KNO3溶液的浓度还可以为0.05M、0.15M、0.2M等。
[0069] 以上所述仅是对本发明的优选实施例及原理进行了详细说明,对本领域的普通技术人员而言,依据本发明提供的思想,在具体实施方式上会有改变之处,而这些改变也应视为本发明的保护范围。

附图说明

[0027] 图1为本发明实施例1的检测四环素用适配体传感器的制备方法的流程图。
版权所有:盲专网 ©2023 zlpt.xyz  蜀ICP备2023003576号