首页 > 专利 > 杭州电子科技大学 > 基于小波能量谱的核电站松动部件质量估计方法专利详情

基于小波能量谱的核电站松动部件质量估计方法   0    0

有效专利 查看PDF
专利申请流程有哪些步骤?
专利申请流程图
申请
申请号:指国家知识产权局受理一件专利申请时给予该专利申请的一个标示号码。唯一性原则。
申请日:提出专利申请之日。
2013-01-25
申请公布
申请公布指发明专利申请经初步审查合格后,自申请日(或优先权日)起18个月期满时的公布或根据申请人的请求提前进行的公布。
申请公布号:专利申请过程中,在尚未取得专利授权之前,国家专利局《专利公报》公开专利时的编号。
申请公布日:申请公开的日期,即在专利公报上予以公开的日期。
2013-07-10
授权
授权指对发明专利申请经实质审查没有发现驳回理由,授予发明专利权;或对实用新型或外观设计专利申请经初步审查没有发现驳回理由,授予实用新型专利权或外观设计专利权。
2015-07-15
预估到期
发明专利权的期限为二十年,实用新型专利权期限为十年,外观设计专利权期限为十五年,均自申请日起计算。专利届满后法律终止保护。
2033-01-25
基本信息
有效性 有效专利 专利类型 发明专利
申请号 CN201310031380.0 申请日 2013-01-25
公开/公告号 CN103137224B 公开/公告日 2015-07-15
授权日 2015-07-15 预估到期日 2033-01-25
申请年 2013年 公开/公告年 2015年
缴费截止日
分类号 G21C17/00G06F19/00G01M7/08 主分类号 G21C17/00
是否联合申请 联合申请 文献类型号 B
独权数量 1 从权数量 0
权利要求数量 1 非专利引证数量 2
引用专利数量 4 被引证专利数量 0
非专利引证 1、方力先等.小波变换在松动件检测系统报警中的应用研究.《原子能科学技术》.2004,第38卷(第5期),432-435.; 2、曹衍龙等.基于小波包的松动件质量估计方法.《机械工程学报》.2010,第46卷(第22期),1-5.;
引用专利 CN101718862A、US5268948A、JPH08334442A、JP2001264151A 被引证专利
专利权维持 5 专利申请国编码 CN
专利事件 事务标签 公开、实质审查、授权
申请人信息
申请人 第一申请人
专利权人 杭州电子科技大学,上海核工程研究设计院 当前专利权人 杭州电子科技大学,上海核工程研究设计院
发明人 方力先、季田田、曾复、张卫、万鹏飞、谢永诚、王赤虎、张海丰、邓晶晶 第一发明人 方力先
地址 浙江省杭州市下沙高教园区2号大街 邮编
申请人数量 2 发明人数量 9
申请人所在省 浙江省 申请人所在市 浙江省杭州市
代理人信息
代理机构
专利代理机构是经省专利管理局审核,国家知识产权局批准设立,可以接受委托人的委托,在委托权限范围内以委托人的名义办理专利申请或其他专利事务的服务机构。
杭州求是专利事务所有限公司 代理人
专利代理师是代理他人进行专利申请和办理其他专利事务,取得一定资格的人。
杜军
摘要
本发明涉及一种基于小波能量谱的核电站松动部件质量估计方法。本发明包括如下步骤: 1.通过加速度传感器获取核反应堆中的冲击信号;2.模拟核反应堆中松动件跌落时的冲击信号 并采集;3.对获取的冲击信号判断幅值;4.根据计算的信号的小波能量谱找出该图的尺度峰值;5.用线性插值法建立尺度峰值函数;6.采集现场信号;7.对获取的现场信号判断幅值;8.计算信号的小波能量谱,根据小波能量谱图找出该图尺度峰值;9.将尺度峰值带入5建立的尺度峰值函数,求得松动件的质量估计值,然后对多个通道中的松动件质量估计值求平均,得到最终的松动件质量结果。本发明具有质量估计误差小、一致性好和抗干扰能力强的优点。
  • 摘要附图
    基于小波能量谱的核电站松动部件质量估计方法
  • 说明书附图:图1
    基于小波能量谱的核电站松动部件质量估计方法
  • 说明书附图:图2
    基于小波能量谱的核电站松动部件质量估计方法
  • 说明书附图:图3
    基于小波能量谱的核电站松动部件质量估计方法
  • 说明书附图:图4
    基于小波能量谱的核电站松动部件质量估计方法
  • 说明书附图:图5
    基于小波能量谱的核电站松动部件质量估计方法
  • 说明书附图:图6
    基于小波能量谱的核电站松动部件质量估计方法
  • 说明书附图:图7
    基于小波能量谱的核电站松动部件质量估计方法
法律状态
序号 法律状态公告日 法律状态 法律状态信息
1 2015-07-15 授权
2 2013-07-10 实质审查的生效 IPC(主分类): G21C 17/00 专利申请号: 201310031380.0 申请日: 2013.01.25
3 2013-06-05 公开
权利要求
权利要求书是申请文件最核心的部分,是申请人向国家申请保护他的发明创造及划定保护范围的文件。
1.基于小波能量谱的核电站松动部件质量估计方法,其特征在于包括以下步骤:
步骤(1)在核反应堆一回路安装多个加速度传感器,以获取核反应堆中的环境噪和松动件跌落时产生的混杂有环境噪声的冲击信号;
步骤(2)用不同质量钢球敲击钢板来模拟核反应堆中松动件跌落时的冲击信号;通过数据采集卡、电荷放大器和加速度传感器获取钢球敲击钢板的冲击信号C(ti),并将这些冲击信号组成质量估计信号库;
所述的冲击信号C(ti)为已知质量钢球敲击钢板产生的冲击信号;
步骤(3)对获取的冲击信号C(ti)判断幅值,以最大幅值前0.03s为开始端,取0.3s长信号数据x(ti),对信号数据x(ti)进行连续小波变换处理得到信号y(ti);
步骤(4)计算信号y(ti)的小波能量谱,根据小波能量谱图找出该图能量峰值所对应的尺度,即尺度峰值am,然后统计不同质量钢球的冲击信号所对应的尺度峰值的均值步骤(5)用线性插值法建立不同质量钢球与尺度峰值均值之间的尺度峰值函数F(xa);
步骤(6)通过数据采集卡、电荷放大器和加速度传感器来实现现场信号S(ti)采集,现场信号S(ti)包括松动件跌落时的冲击信号和环境背景噪声;
步骤(7)对获取的现场信号S(ti)判断幅值,以最大幅值出现前0.03s开始,取0.3s长信号数据g(ti),对信号g(ti)进行连续小波变换处理得到信号m(ti);
步骤(8)计算信号m(ti)的小波能量谱,根据小波能量谱图找出该图尺度峰值xa;
步骤(9)将尺度峰值xa带入步骤(5)建立尺度峰值函数F(xa),求得松动件的质量估计值y,然后对多个通道中的松动件质量估计值求平均,得到最终的松动件质量结果;
所述的步骤(3)和步骤(7)中连续小波变换的公式为:
其中,f(ti)为步骤(3)中的x(ti),为步骤(7)中的g(ti);ψa,b(ti)为小波函数,此处取小波函数为db2; 为ψa,b(ti)的复共轭;a为尺度因子;b为时间平移因子,WTf(a,b)即为经小波尺度a连续变换后的信号;
所述的步骤(4)和步骤(8)中小波能量谱的公式为:
式中,z(ti)为步骤(4)中的y(ti),为步骤(8)中的m(ti);E(a)称为在尺度a上的小波能量谱,则被分析的时间信号F(t)的能量分布为:
式中,EF反映了信号经小波变换后能量随尺度的变化情况;
所述的步骤(5)中的线性插值法为:设质量数组为:L=[l1,l2,l3,…ln],与设质量数组为L对应的小波尺度均值数组为:P=[p1,p2,p3,…pn],变量xa为输入小波尺度,变量y为质量估计值,则可以建立尺度峰值函数F(xa):
说明书

技术领域

[0001] 本发明属于核工程技术领域,尤其涉及一种基于小波能量谱的核电站松动部件质量估计方法,用于估计核电站松动部件质量的质量。
技术背景
[0002] 核电站一回路中松动部件的出现,就意味着反应堆系统安全性能和稳定性能的削弱。松动部件检测系统(LPMS)是核电站一回路最近本的安全检测工具之一。质量估计作为
LPMS中的重要组成部分,准确的估算出松动部件的质量能够为判别松动部件类型提供重要
依据,为故障诊断提供便利。对于提高核电站系统运行的安全性和稳定性起到重要作用。
[0003] 现有的松动部件质量估计方法相关文献有:
[0004] [1] MAYO W . loose part mass and energy estimation [J] .Progress inNuclear Energy, 1999, 34(3): 263-282.
[0005] 一种基于碰撞信号高低频段能量比的松动件质量估计方法。该方法质量估计误差较大,一致性差等问题,尤其是抗干扰能力差。
[0006] [2]模式识别技术用于核电站松动件质量估计模型研究[J],核动力工程,2001,22(5): 465-470
[0007] 一种利用模式识别理论和人工神经网络理论实现对核电站松动件质量进行估计的数学模型。利用模式识别理论的特征提取技术,实现对松动件碰撞信号的特征压缩,从而
形成比较少的特征空间维数,经过神经网络的学习过程,实现对核电站松动件质量大小的
估计。该方法能够得到较高的质量估计精度,但需要大量的试验数据对其进行训练,且一致
性较差。
[0008] [3] 曹衍龙,程实,杨将新,郑华文,何元峰,基于小波包的质量估计方法[J],机械工程学报,2010 .46(22):1-5
[0009] 一种基于小波包的松动件质量估计方法。该方法通过小波包分解获取各频段小波包系数,计算各频段小波包系数的能量潜,并进行归化,得到特征值矢量;以此特征
值矢量作为输入参数,以松动件质量作为输出参数,应用支持向量机((Support vector
machine,SVM)实现松动件质量估计。

发明内容

[0010] 本发明的目的是为了克服现有质量估计方法存在的误差大、一致性差问题,提出了一种基于小波能量谱的核电站松动部件质量估计方法。本发明具有估计误差小、一致性
好和抗干扰能力强等特点,具有较好的工程实际应用价值。
[0011] 本发明解决其技术问题所采用的技术方案包括以下步骤:
[0012] 步骤(1)在核反应堆一回路安装多个加速度传感器,以获取核反应堆中的环境噪和松动件跌落时产生的混杂有环境噪声的冲击信号。
[0013] 步骤(2)用不同质量钢球敲击钢板来模拟核反应堆中松动件跌落时的冲击信号;通过数据采集卡、电荷放大器和加速度传感器获取钢球敲击钢板的冲击信号 ,并将这些冲击信号组成质量估计信号库;
[0014] 所述的冲击信号 为已知质量钢球敲击钢板产生的冲击信号;
[0015] 步骤(3)对获取的冲击信号 判断幅值,以最大幅值前0.03s为开始端,取0.3s长信号数据 ,对信号数据 进行连续小波变换处理得到信号 。
[0016] 步骤(4)计算信号 的小波能量谱,根据小波能量谱图找出该图能量峰值所对应的尺度,即尺度峰值 ,然后统计不同质量钢球的冲击信号所对应的尺度峰值的均值

[0017] 步骤(5)用线性插值法建立不同质量钢球与尺度峰值均值之间的尺度峰值函数;
[0018] 步骤(6)通过数据采集卡、电荷放大器和加速度传感器来实现现场信号 采集,现场信号 包括松动件跌落时的冲击信号和环境背景噪声;
[0019] 步骤(7)对获取的现场信号 判断幅值,以最大幅值出现前0.03s开始,取0.3s长信号数据 ,对信号 进行连续小波变换处理得到信号 。
[0020] 步骤(8)计算信号 的小波能量谱,根据小波能量谱图找出该图尺度峰值 。
[0021] 步骤(9)将尺度峰值 带入步骤(5)建立尺度峰值函数 ,求得松动件的质量估计值 ,然后对多个通道中的松动件质量估计值求平均,得到最终的松动件质量结果。
[0022] 所述的步骤(3)和步骤(7)中连续小波变换的公式为:
[0023] ,
[0024] 其中, 为步骤(3)中的 ,为步骤(7)中的 ; 为小波函数,此处取小波函数为db2; 为 的复共轭; 为尺度因子;为时间平移因子。
即为经小波尺度 连续变换后的信号。
[0025] 所述的步骤(4)和步骤(8)中小波能量谱的公式为:
[0026] ,
[0027] 式中, 为步骤(4)中的 ,为步骤(8)中的 ; 称为在尺度 上的小波能量谱。则被分析的时间信号 的能量分布为:
[0028]
[0029] 式中, 反映了信号经小波变换后能量随尺度的变化情况。
[0030] 所述的步骤(5)中的线性插值法为:设质量数组为: ,与设质量数组为 对应的小波尺度均值数组为: ,变量 为输入小波尺度,变
量 为质量估计值。则可以建立尺度峰值函数 :
[0031] ,( )。
[0032] 本发明有益效果如下:
[0033] 先通过对质量估计信号库中已知质量松动件敲击钢板产生的冲击信号进行小波连续变换,然后计算信号小波能量谱,根据信号能量尺度图找到小波能量峰值处所对应的
小波尺度,统计多次同质量钢球冲击信号的尺度峰值,并求平均值。根据求得的各不同质量
钢球的尺度峰值均值与质量,并通过线性插值法建立碰撞质量尺度峰值函数。最后通过质
量尺度峰值函数来实现核电站松动件的质量估计。小波能量谱方法能很好地反映出冲击质
量的大小变化,且各通道特征具有较好的一致性。该方法能以能量图的形式将冲击质量表
示出来,直观明了,从能量图上就能大致判别冲击质量。抗干扰能力较强。在5dB噪声干扰
情况下,仍然保持冲击信号的主要特征不变;在低于0dB时,能量图主峰主要表现为噪声信
号能量特性,而冲击信号能量峰值变为次峰。若噪声是已知的,则仍能实现质量估计。
[0034] 本发明具有质量估计误差小、一致性好和抗干扰能力强的优点,具有较好的工程实际应用价值。

实施方案

[0042] 下面结合附图和实施例对 本发明作进一步说明。
[0043] 如图7所示,基于小波能量谱的核电站松动部件质量估计方法,包括以下步骤:
[0044] 步骤(1)在核反应堆一回路安装多个加速度传感器,以获取核反应堆中的环境噪和松动件跌落时产生的混杂有环境噪声的冲击信号。
[0045] 步骤(2)用不同质量钢球敲击钢板来模拟核反应堆中松动件跌落时的冲击信号;通过数据采集卡、电荷放大器和加速度传感器获取钢球敲击钢板的冲击信号 ,并将这
些冲击信号组成质量估计信号库;
[0046] 所述的冲击信号 为已知质量钢球敲击钢板产生的冲击信号;
[0047] 步骤(3)对获取的冲击信号 判断幅值,以最大幅值前0.03s为开始端,取0.3s长信号数据 ,对信号数据 进行连续小波变换处理得到信号 。
[0048] 步骤(4)计算信号 的小波能量谱,根据小波能量谱图找出该图能量峰值所对应的尺度,即尺度峰值 ,然后统计不同质量钢球的冲击信号所对应的尺度峰值的均值

[0049] 步骤(5)用线性插值法建立不同质量钢球与尺度峰值均值之间的尺度峰值函数;
[0050] 步骤(6)通过数据采集卡、电荷放大器和加速度传感器来实现现场信号 采集,现场信号 包括松动件跌落时的冲击信号和环境背景噪声;
[0051] 步骤(7)对获取的现场信号 判断幅值,以最大幅值出现前0.03s开始,取0.3s长信号数据 ,对信号 进行连续小波变换处理得到信号 。
[0052] 步骤(8)计算信号 的小波能量谱,根据小波能量谱图找出该图尺度峰值 。
[0053] 步骤(9)将尺度峰值 带入步骤(5)建立尺度峰值函数 ,求得松动件的质量估计值 ,然后对多个通道中的松动件质量估计值求平均,得到最终的松动件质量结果。
[0054] 所述的步骤(3)和步骤(7)中连续小波变换的公式为:
[0055] ,
[0056] 其中, 为步骤(3)中的 ,为步骤(7)中的 ; 为小波函数,此处取小波函数为db2; 为 的复共轭; 为尺度因子;为时间平移因子。
即为经小波尺度 连续变换后的信号。
[0057] 所述的步骤(4)和步骤(8)中小波能量谱的公式为:
[0058] ,
[0059] 式中, 为步骤(4)中的 ,为步骤(8)中的 ; 称为在尺度 上的小波能量谱。则被分析的时间信号 的能量分布为:
[0060]
[0061] 式中, 反映了信号经小波变换后能量随尺度的变化情况。
[0062] 所述的步骤(5)中的线性插值法为:设质量数组为: ,与其对应的小波尺度均值为: ,变量 为输入小波尺度,变量 为质量估计值。
则可以建立分段函数 :
[0063] ,( )。
[0064] 如图1所示,从同一质量钢球冲击信号三通道的小波能量谱图中不难看出,三通道传感器接收到的能量分布具有一致性,且能量峰值具有较一致的尺度,这与Hertz理论
指出的碰撞主频率是相吻合的。
[0065] 如图2所示,从不同质量钢球的冲击信号归一化后的小波能量谱图中可看出,随着冲击质量的增大,小波能量谱向右移动。这些明显的特征变化为质量估计提供了重要
依据,即可以根据尺度峰值随着冲击物质量的变化而发生转移的情况来估计松动部件的质
量。
[0066] 本发明先通过对质量估计信号库中已知质量松动件敲击钢板产生的冲击信号进行小波连续变换,然后计算信号小波能量谱,根据信号能量尺度图找到小波能量峰值处所
对应的小波尺度,统计多次同质量钢球冲击信号的尺度峰值,并求平均值。根据求得的各不
同质量钢球的尺度峰值均值与质量,并通过线性插值法建立碰撞质量尺度峰值函数。最后
通过质量尺度峰值函数来实现核电站松动件的质量估计。小波能量谱方法能很好地反映
出冲击质量的大小变化,且各通道特征具有较好的一致性。该方法能以能量图的形式将冲
击质量表示出来,直观明了,从能量图上就能大致判别冲击质量。抗干扰能力较强。在5dB
噪声干扰情况下,仍然保持冲击信号的主要特征不变;在低于0dB时,能量图主峰主要表现
为噪声信号能量特性,而冲击信号能量峰值变为次峰。若噪声是已知的,则仍能实现质量估
计。
实施例
[0067] 下面结合实施例对本发明作进一步说明:
[0068] 本发明的效果可以通过平板试验的实验结果分析说明:
[0069] 1.试验条件
[0070] 本试验的试验平台由测试对象、传感器、电荷放大器、数据采集卡和计算机构成。测试对象包括:钢球、卧式锅炉和钢板及其支撑。钢板尺寸为200cm*150cm*2cm。为了尽量
减少环境噪声的影响,在钢板的四个边沿下均加了缓冲隔离。缓冲隔离由钢板和橡胶板构
成,缓冲隔离的钢板尺寸为20cm*20cm*1.2cm,橡胶板尺寸为20cm*20cm*2cm。每个缓冲隔
离由3块钢板和3块橡胶板组成,由底层开始分别为钢板、橡胶板、钢板、橡胶板、钢板、橡
胶板,总厚度约10cm。钢球重量分别为20g、44g、100g、175g、225g、360g、510g、640g、880g、
1.12kg、1.4kg、1.8kg、2.52kg、4.1kg、9kg、11.2kg。
[0071] 2.数据采集
[0072] 数据采集包括两部分:冲击信号采集和背景噪声采集。
[0073] (1)冲击信号采集:采用三个加速度传感器,加速度传感器在钢板上呈三角形排列,可参看附图3。冲击物为不同质量钢球。冲击信号为不同质量钢球,分别在高度10cm、
15cm、20cm处敲击钢板不同点的冲击信号。
[0074] (2)背景噪声采集:采用三个加速度传感器,其中一个加速度传感器位于锅炉顶部进水口处,一个位于锅炉出水口,一个位于锅炉顶部左上方。背景噪声为锅炉从冷态到热
态过程中的背景噪声,根据锅炉运行状态(锅炉未运行前、小火、大火、水泵运转、放气等)来
采集数据,锅炉运行状态每改变一次采集一组数据。
[0075] 3.冲击试验结果及分析
[0076] 冲击信号与背景噪声分别按信噪比为-5dB、0dB、5bB、10dB进行叠加,用于试验结果分析。信噪比定义为:
[0077]
[0078] 其中, 表示噪声幅值取绝对值后求平均, 表示信号幅值取绝对值后求最大值。
[0079] 4.仿真结果
[0080] 实验结果对本发明提出的质量估计方法进行了验证。实验结果如附图4和附图5所示,附图5为1.8kg钢球无噪信号和加10dB噪声信号的小波能量图,从图中可看出含噪
信号的小波能量主峰值表现为噪声信号特征,冲击信号特征表现为次峰值。所以只要背景
噪声的频率结构是已知的,就可以根据噪声信号特征,结合信噪比情况对估值结果进行适
当的修正,从而提高质量估计的准确度。
[0081] 本发明用如下方法来计算绝对误差和相对误差:
[0082] 绝对误差: ,其中 为松动件质量真实值与估计值之间的差值。
[0083] 相对误差: ,其中 为松动件质量真实值。
[0084] 试验结果对本发明提出的松动件质量估计方法进行了验证,通过试验数据分析,建立尺度峰值函数,通过尺度峰值函数来实现松松部件的质量估计。附图6为松动件质量
与尺度之间的对应关系,表1为各冲击质量对应的尺度均值,从附图6和表1中不难看出,
小质量的尺度峰值变化相对明显,但随着冲击质量的增大,峰值变化逐渐变得不明显,这是
因为冲击质量大的信号,其能量主要集中在低频范围内,在频谱上很难区分。
[0085] 表1 不同尺度峰值所对应的质量估计值
[0086]
[0087] 表2 质量估计误差
[0088]
[0089] 表2为质量估计的误差,从表中可以看出,质量估计误差最大为19.4%,最小为9.1%,质量估计误差基本在15%左右。所以本发明所提出的方法具有较高的准确率。且抗
干扰能力较强,在背景噪声频谱结构已知的情况下,在信噪比为0dB时仍能较准确的进行
松动件质量估计。
[0090] 本说明书实施例所述的内容仅仅是对发明构思的实现形式的列举,本发明的保护范围不应当被视为仅限于实施例所所陈述的具体形式,本发明的保护范围也及于本领域技
术人员根据本发明构思所能够想到的等同技术手段。

附图说明

[0035] 图1 本发明同一质量冲击信号三通道小波能量谱图;
[0036] 图2 本发明不同质量冲击信号小波能量谱图;
[0037] 图3本发明传感器安装位置图;
[0038] 图4 本发明中1.8kg信号与1.8kg-10dB信号时域图;
[0039] 图5本发明中1.8kg信号与1.8kg-10dB信号小波能量谱图;
[0040] 图6本发明中冲击质量与尺度峰值均值关系;
[0041] 图7 本发明的流程图。
版权所有:盲专网 ©2023 zlpt.xyz  蜀ICP备2023003576号